Re: Implicit differentiation
- To: mathgroup@smc.vnet.net
- Subject: [mg11457] Re: Implicit differentiation
- From: Paul Abbott <paul@physics.uwa.edu.au>
- Date: Thu, 12 Mar 1998 01:34:10 -0500
- Organization: University of Western Australia
- References: <6dqqlo$rkc@smc.vnet.net>
MAvalosJr wrote: > Any ideas how I can plug into mathematica to find the 2nd or third > derivative of an implicit function? The first derivative is okay. I'm > using( Example): in:eq= x^3 + y^3 ==2 > in: step1= Dt[eq,x] > in: step2=Solve[step1, Dt[y,x] (* This > gives me the first derivative*). In[1]:= eqn = x^3 + y^3 == 2; Solve for Dt[y,x]: In[2]:= Dt[y,x]^=Dt[y,x]/. Solve[Dt[eqn,x], Dt[y,x]]//First 2 x Out[2]= -(--) 2 y Using ^= attaches the value of Dt[y,x] to x (not to Dt which is protected). Now we can use NestList to compute higher derivatives: In[3]:= NestList[Dt[#, x] & , Dt[y, x], 2] 2 4 6 3 x -2 x 2 x -10 x 12 x 2 Out[3]= {-(--), ----- - ---, ------ - ----- - --} 2 5 2 8 5 2 y y y y y y Cheers, Paul ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul@physics.uwa.edu.au AUSTRALIA http://www.pd.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________