Re: Implicit differentiation
- To: mathgroup@smc.vnet.net
- Subject: [mg11406] Re: Implicit differentiation
- From: Allan Hayes <hay@haystack.demon.co.uk>
- Date: Sun, 8 Mar 1998 20:13:26 -0500
- References: <6dqqlo$rkc@smc.vnet.net>
MAvalosJr wrote: > > Dear Sirs: > > Any ideas how I can plug into mathematica to find the 2nd or third > derivative of an implicit function? The first derivative is okay. I'm > using( Example): in:eq= x^3 + y^3 ==2 > in: step1= Dt[eq,x] > in: step2=Solve[step1, Dt[y,x] (* This > gives me the first derivative*). In[1]:= eq[n_]=Dt[x^3 + y^3 ==2,{x,n}]; In[2]:= Solve[{eq[1],eq[2]}, Dt[y,{x,2}],{Dt[y,{x,1}]}] (* the {Dt[y,{x,1}]} asks for Dt[y,{x,1}] not to appear in the solution*) Out[2]= 4 3 -2 (x + x y ) {{Dt[y, {x, 2}] -> --------------}} 5 y If you are want more derivatives you might program the process, for example: In[3]:= dt[n_ ]:= Solve[Table[eq[i],{i,n}], Dt[y,{x,n}], Table[Dt[y,{x,i}],{i,n-1}]] In[4]:= dt[3] Out[4]= 6 3 3 6 -2 (5 x + 6 x y + y ) {{Dt[y, {x, 3}] -> ------------------------}} 8 y -- Allan Hayes Training and Consulting Leicester, UK hay@haystack.demon.co.uk http://www.haystack.demon.co.uk voice: +44 (0)116 271 4198 fax: +44 (0)116 271 8642