odd behavior of NDSolve
- To: mathgroup@smc.vnet.net
- Subject: [mg11580] odd behavior of NDSolve
- From: Selwyn Hollis <shollis@peachnet.campus.mci.net>
- Date: Tue, 17 Mar 1998 10:43:01 -0500
- Organization: CampusMCI
I've discovered a very disturbing problem with NDSolve. I'd like to know if others can reproduce this. Here's an example: f[x_, y_] := 1 - Exp[-(x^2 + y^2)] fx[x_, y_] = D[f[x, y], x]; fy[x_, y_] = D[f[x, y], y]; Clear[x0, y0, u0, v0]; diffeqs = {x''[t] == -fx[x[t], y[t]], y''[t] == -fy[x[t], y[t]], x[0] == x0, x'[0] == u0, y[0] == y0, y'[0] == v0} endTime = 12.03; {x0, y0, u0, v0} = {4, 3, -0.7, -0.17}; soln = Flatten[NDSolve[diffeqs, {x, y}, {t, 0, endTime}]]; r[t_] = {x[t], y[t]} /. soln; path = ParametricPlot[r[t], {t, 0, endTime}, PlotRange -> {{-4, 4}, {-4, 4}}]; You should see a curve with a slight bend to it. Now change endTime to 12.04. The bend is gone. Shouldn't we get the same curve for 0 < t < 12.03? Either I'm missing something or NDSolve has a serious problem. (BTW, I'm running Mathematica 3.0 and Mac OS 8.1) -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dr. Selwyn Hollis Associate Professor of Mathematics Armstrong Atlantic State University Savannah, GA 31419 USA <http://www.math.armstrong.edu/faculty/hollis/> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~