Re: the Chinese Remainder Theorem
- To: mathgroup at smc.vnet.net
- Subject: [mg14647] Re: the Chinese Remainder Theorem
- From: fred at thp.Uni-Duisburg.DE (Fred Hucht)
- Date: Sat, 7 Nov 1998 02:09:59 -0500
- Organization: Theoretische Physik, Uni-GH-Duisburg, Germany
- References: <71blgi$pvo@smc.vnet.net> <71jlo9$8p3@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
"Robert G. Wilson v, PhD ATP" <rgwv at SouthWind.Net> writes: >Et al, > Has any one out there programmed a NB for the Chinese Remainder >Theorem? Would very much appreciate the help on this and any other >Number Theory apps. >Sincerely, >Bob. Hi, thats easy ;-) In[1]:= <<NumberTheory`NumberTheoryFunctions` In[2]:= ?ChineseRemainderTheorem ChineseRemainderTheorem[list1, list2] gives the minimal non-negative integer solution of Mod[r, list2] == list1. Fred -- Fred Hucht, Institute of Theoretical Physics, University of Duisburg, Germany Email: fred at thp.Uni-Duisburg.DE http://WWW.thp.Uni-Duisburg.DE/ "Der Koerper der algebraischen Zahlen ist kein algebraischer Zahlkoerper" (E. Landau, Zahlentheorie (1927), Satz 718)