Re: Integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg14776] Re: Integrals
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Sat, 14 Nov 1998 03:08:06 -0500
- References: <7256fr$870@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
jose andres garcia wrote in message <7256fr$870 at smc.vnet.net>... >I need help to resolve this two integrals and if it's posible show the >solution step by step. > > Int((sqrt(x^2-5x+9)-2x^2+x)/((x+1)sqrt(x^2-5x+9)) > > > Int((x^4-7x+2)/((x^2)(sqrt(5x^2+x-10)))) > Jose, Here are the answers that Mathematica gives, Integrate[(Sqrt(x^2 - 5x + 9) - 2x^2 + x)/((x + 1)Sqrt[x^2 - 5x + 9]) , x] (-2 + Sqrt)*Sqrt[9 - 5*x + x^2] + 1/2*(-4 - 7*Sqrt)* ArcSinh[(-5 + 2*x)/Sqrt[11]] + Sqrt[3/5]*(-1 + 5*Sqrt)* Log[1 + x] - Sqrt[3/5]*(-1 + 5*Sqrt)* Log[23 - 7*x + 2*Sqrt[15]*Sqrt[9 - 5*x + x^2]] Integrate[(x^4 - 7x + 2)/((x^2)(Sqrt(5x^2 + x - 10))), x] 1/Sqrt*(1/(5*x) + x/5 - 2/25*Sqrt[67/3]* ArcTanh[(1 + 10*x)/(Sqrt[3]*Sqrt[67])] + (17*Log[x])/25 - 9/25*Log[-10 + x + 5*x^2]) Allan --------------------- Allan Hayes Mathematica Training and Consulting www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565