Partial differential equation
- To: mathgroup at smc.vnet.net
- Subject: [mg14458] Partial differential equation
- From: Wei Zhang <zhangw at eng.umd.edu>
- Date: Wed, 21 Oct 1998 03:32:55 -0400
- Organization: University of Maryland, College Park
- Sender: owner-wri-mathgroup at wolfram.com
Hello! I got problems solving the following partial differential equation using NDSolve, it has taken more than 6hours without coming out anything. Anyone can help me please? I am new with Mathematica...is there any 'standard' packet that i can use to solve nonlinear partial differentialequations numerically? thanks a lot, wei \!\(\(\[Rho]0 = 2.65*10\^\(-6\); \n\[Beta] = 3.9*10\^\(-3\); \nH = 10; \n D\_t = 2.38; \nL = 40*10\^\(-4\); \nT\_0 = 200; \nf = 1000; \n e = 1.602*10\^\(-19\); \nZ = 4; \nD\_b = 3*10\^\(-14\); \n D\_l = 1.5*10\^\(-16\); \nB = 50*10\^9/10\^4; \n \[CapitalOmega] = 10\^\(-20\); \nk = 1.38*10\^\(-23\); \n\)\) \!\(j = 2*\(10\^6\) Sin[6.28*f*t]\n a = \((\((H\/L - \(j\^2\) \[Rho]0\ \[Beta])\)/D\_t)\)\^\(1/2\); \n T = T\_0 + \(\(\(j\^2\) \[Rho]0\ \)\/\(\(a\^2\) D\_t\)\) \((1 - Cosh[a\ x]\/Cosh[\(a\ L\)\/2])\); \n \[Rho] = \[Rho]0 \((1 + \[Beta] \((T - T\_0)\))\); \) 2000000 Sin[6280. t] \!\(\* RowBox[{ RowBox[{ RowBox[{"solution", "=", RowBox[{"NDSolve", "[", RowBox[{ RowBox[{"{", RowBox[{ \(\[PartialD]\_t u[x, t] == \((\(Z\ e\ \[Rho]\ \ j\ D\_b\)\/\(k\ T\)\ )\) \[PartialD]\_x\ u[x, t] + \((\(B\ \[CapitalOmega]\ D\_b\)\/\(k\ T\))\) \[PartialD]\_\(x, x\)u[x, t]\), ",", \(u[x, 0] == 0\), ",", " ", RowBox[{ RowBox[{\(\((Z\ e\ \[Rho]0\ j\ )\) u[0, t]\), "-", RowBox[{\((B\ \[CapitalOmega]\ )\), RowBox[{ SuperscriptBox["u", TagBox[\((1, 0)\), Derivative], MultilineFunction->None], "[", \(0, t\), "]"}]}]}], "==", "0"}], ",", RowBox[{ RowBox[{\(\((Z\ e\ \[Rho]0\ j\ )\)\ u[L, t]\), "-", RowBox[{\((B\ \[CapitalOmega]\ )\), RowBox[{ SuperscriptBox["u", TagBox[\((1, 0)\), Derivative], MultilineFunction->None], "[", \(L, t\), "]"}]}]}], "==", "0"}]}], "}"}], ",", "u", ",", \({x, \ 0, \ L}\), ",", " ", \({t, 0, 10000}\)}], "]"}]}], ";"}], "\n"}]\) Plot3D[Evaluate[u[x,t]/.First[solution]],{x,0,L},{t,0,10000}];