Re: Convolution Integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg16835] Re: Convolution Integrals
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Thu, 1 Apr 1999 21:35:16 -0500
- Organization: University of Western Australia
- References: <7dprk0$dqc@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
The following code is fine:
<<Statistics`ContinuousDistributions`
<<Calculus`FourierTransform`
dist1=NormalDistribution[10,3];
pdf1=PDF[dist1,x];
dist2=NormalDistribution[5,4];
pdf2=PDF[dist2,x];
trans1=FourierTransform[pdf1,x,s];
trans2=FourierTransform[pdf2,x,s];
> I seem to be able to get to the inverse transform alright but how do I
> plot the final distribution?
To get the convolution (your syntax omitted s and x) you need
conv = InverseFourierTransform[trans1 trans2, s, x]
You can then Plot the pdf and convolution together:
Plot[{pdf1, pdf2, conv}, {x, -10, 30}, PlotRange -> All,
PlotStyle -> Table[Hue[i], {i, 0, 1, 1/3}]];
Cheers,
Paul
____________________________________________________________________
Paul Abbott Phone: +61-8-9380-2734
Department of Physics Fax: +61-8-9380-1014
The University of Western Australia
Nedlands WA 6907 mailto:paul at physics.uwa.edu.au
AUSTRALIA http://www.physics.uwa.edu.au/~paul
God IS a weakly left-handed dice player
____________________________________________________________________