DSolve Bessels
- To: mathgroup at smc.vnet.net
- Subject: [mg19045] DSolve Bessels
- From: "Alberto Verga" <verga at marius.univ-mrs.fr>
- Date: Thu, 5 Aug 1999 01:34:39 -0400
- Organization: Universite de la Mediterranee Aix en Provence
- Sender: owner-wri-mathgroup at wolfram.com
Mathematica 3 seems to be not able to show that J_1(x) is solution of the Bessel equation: in: yy=BesselJ[1,x] in: Simplify[D[yy,{x,2}]+D[yy,x]/x+(1-1/x^2)yy] out: 1/(4x^2) (x^2 BesselJ[-1, x] + 2 x BesselJ[0, x] - 4 BesselJ[1, x] + 2 x^2 BesselJ[1, x] - 2 x BesselJ[2, x] + x^2 BesselJ[3, x]) Using trivial transformations one gets 0, Mathematica does it not. One obtains the correct answer (out: 0) in other systems. Is Mathematica 4 able to show that a solution obtained with DSolve, when replaced back into the original equation, is actually the solution? in: DSolve[D[y[x],{x,2}]+D[y[x],x]/x+(1-1/x^2)y[x]==0,y[x],x] out: y[x] ->BesselJ[1, Sqrt[x^2]] C[1] +... -- Alberto Verga - verga at marius.univ-mrs.fr Institut de Recherche sur les Phénomènes Hors Equilibre. 12, av. Général Leclerc, 13003 Marseille, France. Tel: 33 (0) 4 91 64 44 76 - Fax 33 (0) 4 91 08 16 37