Re: Control Function With NDsolve
- To: mathgroup at smc.vnet.net
- Subject: [mg19419] Re: Control Function With NDsolve
- From: Don Paddleford <don-paddleford at worldnet.att.net>
- Date: Mon, 23 Aug 1999 13:57:25 -0400
- Organization: AT&T WorldNet Services
- References: <7p5dm5$127@smc.vnet.net> <7pl53k$c74@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Eckhard Hennig wrote: > > Don Paddleford schrieb in Nachricht <7p5dm5$127 at smc.vnet.net>... > >In solving a control type dif eq with NDSolve I have the following > >question. Suppose the eq is of the following simplified form > > > > y'[t]==a*f[y[t]]-b*y[t] > > y[0]==0 > > > >How to define f so that it starts at f=1, and changes to f=0 when y > >reaches ymax, and then changes back to f=1 when y reaches ymin, and so > >on in oscilatory fashion? > > > > Don, > > you can define such a function as follows. Note that it is important to > define the pattern for f such that it applies only to numeric arguments. > Otherwise, f[y[t]] would be evaluated prematurely in In[3]. > > In[1]:= f[y_Real] := > If[(y > ymax && fval == 1) || (y < ymin && fval == 0), > fval = 1 - fval, > fval] > > In[2]:= ymax = 0.9; ymin = 0.1; a = 1; b = 1; > > In[3]:= eqs = {y'[t] == a*f[y[t]] - b*y[t], y[0] == 0}; > > In[4]:= fval = 1; NDSolve[eqs, y[t], {t, 0, 10}]; > > In[5]:= y1[t_] = y[t] /. First[%]; > > In[6]:= Plot[y1[t], {t, 0, 10}, PlotRange->All] > > -- Eckhard > > ----------------------------------------------------------- > Dipl.-Ing. Eckhard Hennig mailto:hennig at itwm.uni-kl.de > Institut fuer Techno- und Wirtschaftsmathematik e.V. (ITWM) > Erwin-Schroedinger-Strasse, 67663 Kaiserslautern, Germany > Voice: +49-(0)631-205-3126 Fax: +49-(0)631-205-4139 > http://www.itwm.uni-kl.de/as/employees/hennig.html > > ITWM - Makers of Analog Insydes for Mathematica > http://www.itwm.uni-kl.de/as/products/ai > ----------------------------------------------------------- Eckhard, Thanks for the reply. Your suggestion worked perfectly and is exactly what I needed for both, this question, and another I posted several days later on the same subject. Don