Re: Finding real part (newbie question)

• To: mathgroup at smc.vnet.net
• Subject: [mg15825] Re: Finding real part (newbie question)
• From: phbrf at t-online.de (Peter Breitfeld)
• Date: Mon, 8 Feb 1999 03:25:49 -0500 (EST)
• Organization: das ist ein breites Feld ...
• References: <79e8lo\$9du@smc.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```Gnalle <GNALLE at MMF.ruc.dk> schrieb:
> If a,b,c,d are real numbers. How do I use mathematica to find the real
> part of
>
> 1/(a + I b + 1/(c + I d))
>
> Yes I can calculate it by hand, but I would like to know how to use
> Mathematica.

Try this:

z=1/(a + I b + 1/(c + I d)

this gives the real-part:

In[1]=
z1=ComplexExpand[z,TargetFunctions->{Re,Im}]//.Complex[0,_]->0
//Simplify

Out[1]=
c + a c^2 + a d^2
--------------------------------------------------
1 + 2 a c - 2 b d + a^2(c^2 + d^2) + b^2(c^2 + d^2)

The imaginary part is then z-z1.

es gruesst
Peter
--
=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=--=
Peter Breitfeld, Saulgau, Germany       (PGP public key: 08548045)

```

• Prev by Date: Re: List Position
• Next by Date: Re: Function definition
• Previous by thread: Re: Finding real part (newbie question)
• Next by thread: Re: Finding real part (newbie question)