Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
1999
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 1999

[Date Index] [Thread Index] [Author Index]

Search the Archive

problem?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg18605] problem?
  • From: 965-T9214 Ayad Soufiane <daya at venus.algo.cs.kumamoto-u.ac.jp>
  • Date: Tue, 13 Jul 1999 01:01:31 -0400
  • Sender: owner-wri-mathgroup at wolfram.com

I wrote this program for Mathematica 2.2 for SPARC and every thing was all
right, but  upgrading to Mathematica 3.0 the same program doesn't work, and its
giving me some fancy message
do you have any idea about what is the problem ?

Regards,
Ayad Soufiane 

---------------
Listing of the Program
---------------
 
Print[StringForm["  App. Num.  "]];
Print[StringForm["========================================================"]];
For[ Split1=3, Split1 <5, Split1++,
g=2;
Beta1=1;
nmax=Split1*(g-1);
lng[x_]=Log[x]/Log[g];
Pr[i_]=lng[1+1/i];
c[Split1_]=lng[Split1+1];
Start[Split1_]=g^(c[Split1]);
End1[Split1_]=g^(c[Split1]+1)-1;
TableSize[Split1_]=End1[Split1]-Start[Split1]+1;
LoadFactor[N1_,Split1_]=N1/TableSize[Split1];
Ro[i_,N1_]=1/N1;
P[N1_,i_,j_]=Binomial[N1,j]*Pr[i]^(j)*(1-Pr[i])^(N1-j);
Alpha1[i_,j_,k_,N1_]=If[i-1>=j-1,If[N1-1>=k-1,If[N1-i>=k-j,Binomial[i-1,j-1]*Binomial[N1-i,k-j]/Binomial[N1-1,k-1],0],0],0];
Gamma1[k_,j_,N1_]=If[k>=j,Sum[Alpha1[i,j,k,N1]*Ro[i,N1],{i,j,N1}],0];
q[N1_,h_,Split1_]=Sum[Pr[Ba]*Gamma1[j,h,N1]*P[N1,Ba,j],{Ba,Start[Split1],End1[Split1]},{j,1,N1}];
S[N1_,Split1_]=Sum[h*q[N1,h,Split1],{h,1,N1}]/Sum[Pr[i]*P[N1,i,j],{i,Start[Split1],End1[Split1]},{j,1,N1}];
Print[StringForm[" "]];
Print[StringForm[" "]];
Print[StringForm[" "]];
Print[StringForm["-----------------------------------------------"]];
Print[StringForm["*                                             *"]];
Print[StringForm["*                  Num. App.                  *"]];
Print[StringForm["*                                             *"]];
Print[StringForm["-----------------------------------------------"]];
Print[StringForm[" "]];
Print[StringForm[" "]];
Print[StringForm["Growth Factor   g        :  "],g];
Print[StringForm["Beta                     :  "],Beta1];
Print[StringForm["Split Number             :  "],Split1];
Print[StringForm["Start File               :  "],N[Start[Split1]]];
Print[StringForm["End File                 :  "],N[End1[Split1]]];
Print[StringForm["Table Size               :  "],N[TableSize[Split1]]];
Print[StringForm["Load Factor      Alpha   :  "],N[LoadFactor[nmax,Split1]]];
Print[StringForm["Average Search Cost S("],N[nmax],StringForm[") : "],N[S[nmax,Split1]]];
]


----------
Out-Put
----------

Mathematica 3.0 for HP-UX PA-RISC
Copyright 1988-97 Wolfram Research, Inc.
 -- Motif graphics initialized -- 

In[1]:= App. Num.  

In[2]:= 
In[2]:= ========================================================

In[3]:= 
In[3]:= 
$MaxExtraPrecision::meprec: 
   In increasing internal precision while attempting to evaluate 
                1 + Log[4]/Log[2]
    Floor[-4 + 2                 ], the limit $MaxExtraPrecision = 50.
     was reached. Increasing the value of $MaxExtraPrecision may help resolve
     the uncertainty.

$MaxExtraPrecision::meprec: 
   In increasing internal precision while attempting to evaluate 
                1 + Log[4]/Log[2]
    Floor[-4 + 2                 ], the limit $MaxExtraPrecision = 50.
     was reached. Increasing the value of $MaxExtraPrecision may help resolve
     the uncertainty.

$MaxExtraPrecision::meprec: 
   In increasing internal precision while attempting to evaluate 
                1 + Log[4]/Log[2]
    Floor[-4 + 2                 ], the limit $MaxExtraPrecision = 50.
     was reached. Increasing the value of $MaxExtraPrecision may help resolve
     the uncertainty.

General::stop: Further output of $MaxExtraPrecision::meprec
     will be suppressed during this calculation.
 
 
 
-----------------------------------------------
*                                             *
*                  Num. App.                  *
*                                             *
-----------------------------------------------
 
 
Growth Factor   g        :  2
Beta                     :  1
Split Number             :  3
Start File               :  4.
End File                 :  7.
Table Size               :  4.
Load Factor      Alpha   :  0.75

                                 1
Power::infy: Infinite expression - encountered.
                                 0

Infinity::indet: 
   Indeterminate expression 
                                                           1
                                                   Log[1 + -]
                                                           i  3
     0 ComplexInfinity (Log[2] + <<1>>) <<1>> (1 - ----------)
                                                     Log[2]
     ---------------------------------------------------------- encountered.
                                        1  2         1
            Pi Log[2] (Log[2] - Log[1 + -])  Log[1 + -]
                                        i            i
Average Search Cost S(3.) : Indeterminate
 
 
 
-----------------------------------------------
*                                             *
*                  Num. App.                  *
*                                             *
-----------------------------------------------
 
 
Growth Factor   g        :  2
Beta                     :  1
Split Number             :  4
Start File               :  5.
End File                 :  9.
Table Size               :  5.
Load Factor      Alpha   :  0.8

                                 1
Power::infy: Infinite expression - encountered.
                                 0

Infinity::indet: 
   Indeterminate expression 
                                                           1
                                                   Log[1 + -]
                                                           i  4
     0 ComplexInfinity (Log[2] + <<1>>) <<1>> (1 - ----------)
                                                     Log[2]
     ---------------------------------------------------------- encountered.
                                        1  2         1
            Pi Log[2] (Log[2] - Log[1 + -])  Log[1 + -]
                                        i            i
Average Search Cost S(4.) : Indeterminate

In[4]:= 
In[4]:= 


  • Prev by Date: Re: Character encoding with Display[]
  • Next by Date: Re: Need a means to get arguments of a function
  • Previous by thread: Re: Character encoding with Display[]
  • Next by thread: [Q] Implementing identities as rules