problem?
- To: mathgroup at smc.vnet.net
- Subject: [mg18605] problem?
- From: 965-T9214 Ayad Soufiane <daya at venus.algo.cs.kumamoto-u.ac.jp>
- Date: Tue, 13 Jul 1999 01:01:31 -0400
- Sender: owner-wri-mathgroup at wolfram.com
I wrote this program for Mathematica 2.2 for SPARC and every thing was all right, but upgrading to Mathematica 3.0 the same program doesn't work, and its giving me some fancy message do you have any idea about what is the problem ? Regards, Ayad Soufiane --------------- Listing of the Program --------------- Print[StringForm[" App. Num. "]]; Print[StringForm["========================================================"]]; For[ Split1=3, Split1 <5, Split1++, g=2; Beta1=1; nmax=Split1*(g-1); lng[x_]=Log[x]/Log[g]; Pr[i_]=lng[1+1/i]; c[Split1_]=lng[Split1+1]; Start[Split1_]=g^(c[Split1]); End1[Split1_]=g^(c[Split1]+1)-1; TableSize[Split1_]=End1[Split1]-Start[Split1]+1; LoadFactor[N1_,Split1_]=N1/TableSize[Split1]; Ro[i_,N1_]=1/N1; P[N1_,i_,j_]=Binomial[N1,j]*Pr[i]^(j)*(1-Pr[i])^(N1-j); Alpha1[i_,j_,k_,N1_]=If[i-1>=j-1,If[N1-1>=k-1,If[N1-i>=k-j,Binomial[i-1,j-1]*Binomial[N1-i,k-j]/Binomial[N1-1,k-1],0],0],0]; Gamma1[k_,j_,N1_]=If[k>=j,Sum[Alpha1[i,j,k,N1]*Ro[i,N1],{i,j,N1}],0]; q[N1_,h_,Split1_]=Sum[Pr[Ba]*Gamma1[j,h,N1]*P[N1,Ba,j],{Ba,Start[Split1],End1[Split1]},{j,1,N1}]; S[N1_,Split1_]=Sum[h*q[N1,h,Split1],{h,1,N1}]/Sum[Pr[i]*P[N1,i,j],{i,Start[Split1],End1[Split1]},{j,1,N1}]; Print[StringForm[" "]]; Print[StringForm[" "]]; Print[StringForm[" "]]; Print[StringForm["-----------------------------------------------"]]; Print[StringForm["* *"]]; Print[StringForm["* Num. App. *"]]; Print[StringForm["* *"]]; Print[StringForm["-----------------------------------------------"]]; Print[StringForm[" "]]; Print[StringForm[" "]]; Print[StringForm["Growth Factor g : "],g]; Print[StringForm["Beta : "],Beta1]; Print[StringForm["Split Number : "],Split1]; Print[StringForm["Start File : "],N[Start[Split1]]]; Print[StringForm["End File : "],N[End1[Split1]]]; Print[StringForm["Table Size : "],N[TableSize[Split1]]]; Print[StringForm["Load Factor Alpha : "],N[LoadFactor[nmax,Split1]]]; Print[StringForm["Average Search Cost S("],N[nmax],StringForm[") : "],N[S[nmax,Split1]]]; ] ---------- Out-Put ---------- Mathematica 3.0 for HP-UX PA-RISC Copyright 1988-97 Wolfram Research, Inc. -- Motif graphics initialized -- In[1]:= App. Num. In[2]:= In[2]:= ======================================================== In[3]:= In[3]:= $MaxExtraPrecision::meprec: In increasing internal precision while attempting to evaluate 1 + Log[4]/Log[2] Floor[-4 + 2 ], the limit $MaxExtraPrecision = 50. was reached. Increasing the value of $MaxExtraPrecision may help resolve the uncertainty. $MaxExtraPrecision::meprec: In increasing internal precision while attempting to evaluate 1 + Log[4]/Log[2] Floor[-4 + 2 ], the limit $MaxExtraPrecision = 50. was reached. Increasing the value of $MaxExtraPrecision may help resolve the uncertainty. $MaxExtraPrecision::meprec: In increasing internal precision while attempting to evaluate 1 + Log[4]/Log[2] Floor[-4 + 2 ], the limit $MaxExtraPrecision = 50. was reached. Increasing the value of $MaxExtraPrecision may help resolve the uncertainty. General::stop: Further output of $MaxExtraPrecision::meprec will be suppressed during this calculation. ----------------------------------------------- * * * Num. App. * * * ----------------------------------------------- Growth Factor g : 2 Beta : 1 Split Number : 3 Start File : 4. End File : 7. Table Size : 4. Load Factor Alpha : 0.75 1 Power::infy: Infinite expression - encountered. 0 Infinity::indet: Indeterminate expression 1 Log[1 + -] i 3 0 ComplexInfinity (Log[2] + <<1>>) <<1>> (1 - ----------) Log[2] ---------------------------------------------------------- encountered. 1 2 1 Pi Log[2] (Log[2] - Log[1 + -]) Log[1 + -] i i Average Search Cost S(3.) : Indeterminate ----------------------------------------------- * * * Num. App. * * * ----------------------------------------------- Growth Factor g : 2 Beta : 1 Split Number : 4 Start File : 5. End File : 9. Table Size : 5. Load Factor Alpha : 0.8 1 Power::infy: Infinite expression - encountered. 0 Infinity::indet: Indeterminate expression 1 Log[1 + -] i 4 0 ComplexInfinity (Log[2] + <<1>>) <<1>> (1 - ----------) Log[2] ---------------------------------------------------------- encountered. 1 2 1 Pi Log[2] (Log[2] - Log[1 + -]) Log[1 + -] i i Average Search Cost S(4.) : Indeterminate In[4]:= In[4]:=