MathGroup Archive 1999

[Date Index] [Thread Index] [Author Index]

Search the Archive

Contour Integral Routines

  • To: mathgroup at smc.vnet.net
  • Subject: [mg18641] Contour Integral Routines
  • From: p_mclean at postoffice.utas.edu.au (Patrick McLean)
  • Date: Thu, 15 Jul 1999 01:45:38 -0400
  • Organization: Maths Dept, University of Tasmania
  • Sender: owner-wri-mathgroup at wolfram.com

Here are some lil' routines I knocked up to do some contour integration. I
think that they're pretty dodgy but a first approximation nonetheless!!

Things I'd like to do:
   Fix dodgy bits
   Include other contours
   Put little arrows on the contours
   Conformal Maps??

If there are any suggestions or similar approaches out there I'd be interested.

\!\(\( (*\ 
    Version\ 4\ users\ can\ omit\ this\ *) << Calculus`\n\(X[a_, b_]\)[t_] := 
    \(UnitStep[t - a] - 
        UnitStep[t - b]\n
          \n (*\ Integral\ of\ f\ over\ path\ made\ up\ of\ gs\ *) \n
          i[f_, gs_] := 
      \(Sum[NIntegrate[
              f[\(gs[\([i]\)]\)[t]] \(\(Derivative[1]\)[gs[\([i]\)]]\)[t], {
                t, 0, 1}], {i, 1, Length[gs]}]\n
          \n (*\ Plot\ of\ path\ made\ up\ of\ gs\ *) \nplot[gs_] := 
        \(ParametricPlot[\n\t\t
              Evaluate[
                Table[{Re[\(gs[\([i]\)]\)[t]], Im[\(gs[\([i]\)]\)[t]]}, {i, 
                    1, Length[gs]}]]\n\t\t\t, {t, 0, 1}, PlotRange -> All]\n
            \n (*\ Reverses\ orientation\ of\ path\ segment\ *) \nm[g_] := 
          \(\(g[1 - #]\ &\)\n
              \n (*\ Circles\ And\ Some\ Ellipses\ *) 
                \(c[zc_, r_, t0_, t1_]\)[t_] := 
            \(zc + r\ Exp[2  Pi\ I\ \((t0 + \((t1 - t0)\)\ t)\)]\n
                  \(el[t0_, t1_, p_]\)[t_] := 
              \(Cos[2\ Pi\ \((t0 + \((t1 - t0)\) t)\) - I\ Log[p]]\n
                  \n (*\ Lines\ *) \n\(l[a_, b_]\)[t_] := 
                \(a\ \((1 - t)\)\  + 
                    t\ \ b\n\(l[z0_, DirectedInfinity[z_]]\)[t_] := 
                  \(z0 + z\ Tan[Pi\ t/2]\n
                        \(l[z0_, DirectedInfinity[z_]]\)[1] := 
                    \(DirectedInfinity[z]\nl[DirectedInfinity[z_], z0_] := 
                      m[l[z0, DirectedInfinity[z]]]\)\)\)\)\)\)\)\)\); \n
  \n (*\ Now\ try\ plotting\ this\ path\ *) \np = 6; r = 1/p; t1 = 1/8; 
  t2 = 1 - t1; 
  t4 = \(-\(ArcSin[\(Sqrt[2]\ p\ r\)\/\(1 - p\^2\)]\/\(2\ \[Pi]\)\)\); 
  t3 = 1 - t4; \n
  plot[{\n\t\tm[c[1, r, t1, t2]], \n\t\t
        l[\(m[c[1, r, t1, t2]]\)[1], \(el[t4, t3, p]\)[0]], \t\t\n\t\t
        el[t4, t3, p], \n\t\t
        l[\(el[t4, t3, p]\)[1], \(m[c[1, r, t1, t2]]\)[0]]\n\t}]\n
    \n (*\ or\ doing\ this\ integral\ *) \ni[Cos, {c[0, 2, 0, 1/4]\t}]\)\)

-- 
Patrick McLean

No news is good news...


  • Prev by Date: Re: Re: Re: Select in Math.
  • Next by Date: NSolve with varying parameter
  • Previous by thread: Re: Re: Rudimentary Spell Checker
  • Next by thread: NSolve with varying parameter