Contour Integral Routines
- To: mathgroup at smc.vnet.net
- Subject: [mg18641] Contour Integral Routines
- From: p_mclean at postoffice.utas.edu.au (Patrick McLean)
- Date: Thu, 15 Jul 1999 01:45:38 -0400
- Organization: Maths Dept, University of Tasmania
- Sender: owner-wri-mathgroup at wolfram.com
Here are some lil' routines I knocked up to do some contour integration. I think that they're pretty dodgy but a first approximation nonetheless!! Things I'd like to do: Fix dodgy bits Include other contours Put little arrows on the contours Conformal Maps?? If there are any suggestions or similar approaches out there I'd be interested. \!\(\( (*\ Version\ 4\ users\ can\ omit\ this\ *) << Calculus`\n\(X[a_, b_]\)[t_] := \(UnitStep[t - a] - UnitStep[t - b]\n \n (*\ Integral\ of\ f\ over\ path\ made\ up\ of\ gs\ *) \n i[f_, gs_] := \(Sum[NIntegrate[ f[\(gs[\([i]\)]\)[t]] \(\(Derivative[1]\)[gs[\([i]\)]]\)[t], { t, 0, 1}], {i, 1, Length[gs]}]\n \n (*\ Plot\ of\ path\ made\ up\ of\ gs\ *) \nplot[gs_] := \(ParametricPlot[\n\t\t Evaluate[ Table[{Re[\(gs[\([i]\)]\)[t]], Im[\(gs[\([i]\)]\)[t]]}, {i, 1, Length[gs]}]]\n\t\t\t, {t, 0, 1}, PlotRange -> All]\n \n (*\ Reverses\ orientation\ of\ path\ segment\ *) \nm[g_] := \(\(g[1 - #]\ &\)\n \n (*\ Circles\ And\ Some\ Ellipses\ *) \(c[zc_, r_, t0_, t1_]\)[t_] := \(zc + r\ Exp[2 Pi\ I\ \((t0 + \((t1 - t0)\)\ t)\)]\n \(el[t0_, t1_, p_]\)[t_] := \(Cos[2\ Pi\ \((t0 + \((t1 - t0)\) t)\) - I\ Log[p]]\n \n (*\ Lines\ *) \n\(l[a_, b_]\)[t_] := \(a\ \((1 - t)\)\ + t\ \ b\n\(l[z0_, DirectedInfinity[z_]]\)[t_] := \(z0 + z\ Tan[Pi\ t/2]\n \(l[z0_, DirectedInfinity[z_]]\)[1] := \(DirectedInfinity[z]\nl[DirectedInfinity[z_], z0_] := m[l[z0, DirectedInfinity[z]]]\)\)\)\)\)\)\)\)\); \n \n (*\ Now\ try\ plotting\ this\ path\ *) \np = 6; r = 1/p; t1 = 1/8; t2 = 1 - t1; t4 = \(-\(ArcSin[\(Sqrt[2]\ p\ r\)\/\(1 - p\^2\)]\/\(2\ \[Pi]\)\)\); t3 = 1 - t4; \n plot[{\n\t\tm[c[1, r, t1, t2]], \n\t\t l[\(m[c[1, r, t1, t2]]\)[1], \(el[t4, t3, p]\)[0]], \t\t\n\t\t el[t4, t3, p], \n\t\t l[\(el[t4, t3, p]\)[1], \(m[c[1, r, t1, t2]]\)[0]]\n\t}]\n \n (*\ or\ doing\ this\ integral\ *) \ni[Cos, {c[0, 2, 0, 1/4]\t}]\)\) -- Patrick McLean No news is good news...