Re: DSolve
- To: mathgroup at smc.vnet.net
- Subject: [mg18775] Re: DSolve
- From: Paul Abbott <paul at physics.uwa.edu.au>
- Date: Tue, 20 Jul 1999 01:33:31 -0400
- Organization: University of Western Australia
- References: <7mp2bh$l7j@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
"N. Shamsundar" wrote: > Here is a pair of differential equations that Version 3 could not solve > (actually, it was still trying after 15 minutes on a 400 MHz PII!) > > w:=Exp[-a x]; > DSolve[{u'[x]==-u[x]+v[x]+w (1-a)+Cos[Pi x]-(1+Pi) Sin[Pi x], > v''''[x]==u[x]+v[x]+(Pi^4-1) Sin[Pi x]-Cos[Pi x]-w, u[0]==2, > v[0]==0,v''[0]==0,v[1]==0,v''[1]==0}, > {u[x],v[x]},x] > > These are linear equations with constant coefficients, and the exact solution > is > u=w+cos(Pi x), v=sin(Pi x) > > I would appreciate someone running this calculation in Version 4. The problem is not version specific. If you try solving your pair of equations without the boundary conditions you will get a rather long answer involving Root objects. If you eliminate u[x] you obtain a 5th order equation in v leading to a fifth order auxilliary equation with non-trivial roots (and this is where Mathematica gets stuck). The following Notebook suggests a general approach for solving this type of problem. Notebook[{ Cell[CellGroupData[{ Cell["Modifiying Equal", "Section"], Cell[TextData[{ "We modify ", Cell[BoxData[ FormBox[ StyleBox["Equal", "Input"], TraditionalForm]]], " so that ", Cell[BoxData[ FormBox[ StyleBox["Listable", "Input"], TraditionalForm]]], " operations are automatically applied to both sides of any equality:" }], "Text", CellTags->{"Equal", "Listable"}], Cell[BoxData[ \(TraditionalForm\`\(Unprotect[Equal];\)\)], "Input"], Cell[BoxData[ \(TraditionalForm\`listableQ(f_) := MemberQ(Attributes(f), Listable)\)], "Input"], Cell[BoxData[ \(TraditionalForm\`Equal /: \ lhs : f_Symbol? listableQ[___, \ _Equal, \ ___]\ := \n\ \ \ \ \ \ \ \ Thread[\ Unevaluated[lhs], \ Equal\ ]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`\(Protect[Equal];\)\)], "Input"], Cell["This allows direct manipulation of equations.", "Text"] }, Closed]], Cell[CellGroupData[{ Cell["Pair of Differential Equations", "Section"], Cell[BoxData[ \(TraditionalForm\`\(w[ x_] = \[ExponentialE]\^\(\(-a\)\ x\);\)\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{\(\[ScriptCapitalE]\_1\), "=", RowBox[{ RowBox[{ SuperscriptBox["u", "\[Prime]", MultilineFunction->None], "(", "x", ")"}], "==", \(\((1 - a)\)\ w[x] + cos(\[Pi]\ x) - \((1 + \[Pi])\)\ \(sin(\[Pi]\ x)\) - u(x) + v(x)\)}]}], ";"}], TraditionalForm]], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{\(\[ScriptCapitalE]\_2\), "=", RowBox[{ RowBox[{ SuperscriptBox["v", TagBox[\((4)\), Derivative], MultilineFunction->None], "(", "x", ")"}], "==", \(\(-w[x]\) - cos(\[Pi]\ x) + \((\[Pi]\^4 - 1)\)\ \(sin(\[Pi]\ x)\) + u(x) + v(x)\)}]}], ";"}], TraditionalForm]], "Input"], Cell[TextData[{ "Eliminate ", Cell[BoxData[ \(TraditionalForm\`u(x)\)]], " and ", Cell[BoxData[ \(TraditionalForm\`\(u\^\[Prime]\)(x)\)]], ":" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{\(\[ScriptCapitalE]\_3\), "=", RowBox[{"Eliminate", "[", RowBox[{ RowBox[{"{", RowBox[{\(\[ScriptCapitalE]\_1\), ",", \(\[ScriptCapitalE]\_2\), ",", FractionBox[\(\[PartialD]\[ScriptCapitalE]\_2\), \ \(\[PartialD]x\), MultilineFunction->None]}], "}"}], ",", RowBox[{"{", RowBox[{\(u(x)\), ",", RowBox[{ SuperscriptBox["u", "\[Prime]", MultilineFunction->None], "(", "x", ")"}]}], "}"}]}], "]"}]}], TraditionalForm]], "Input"], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{\(\[Pi]\^5\ \(cos(\[Pi]\ x)\)\), "-", \(\[Pi]\ \(cos(\[Pi]\ x)\)\), "+", \(\[Pi]\^4\ \(sin(\[Pi]\ x)\)\), "-", \(2\ \(sin(\[Pi]\ x)\)\), "+", \(2\ \(v(x)\)\), "+", RowBox[{ SuperscriptBox["v", "\[Prime]", MultilineFunction->None], "(", "x", ")"}], "-", RowBox[{ SuperscriptBox["v", TagBox[\((5)\), Derivative], MultilineFunction->None], "(", "x", ")"}]}], "==", RowBox[{ SuperscriptBox["v", TagBox[\((4)\), Derivative], MultilineFunction->None], "(", "x", ")"}]}], TraditionalForm]], "Output"] }, Open ]], Cell[TextData[{ StyleBox["Mathematica", FontSlant->"Italic"], " cannot solve this ", Cell[BoxData[ \(TraditionalForm\`5\^th\)]], " order equation, and even the homogenous equation is non-trivial:" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{"DSolve", "[", RowBox[{ FormBox[ RowBox[{ RowBox[{\(2\ \(v(x)\)\), "+", RowBox[{ SuperscriptBox["v", "\[Prime]", MultilineFunction->None], "(", "x", ")"}], "-", RowBox[{ SuperscriptBox["v", TagBox[\((5)\), Derivative], MultilineFunction->None], "(", "x", ")"}]}], "==", RowBox[{ SuperscriptBox["v", TagBox[\((4)\), Derivative], MultilineFunction->None], "(", "x", ")"}]}], "TraditionalForm"], ",", \(v[x]\), ",", "x"}], "]"}], TraditionalForm]], "Input"], Cell[BoxData[ FormBox[ RowBox[{"{", RowBox[{"{", RowBox[{\(v(x)\), "->", RowBox[{ RowBox[{\(\[ExponentialE]\^\(x\ Root[#1\^5 + #1\^4 - #1 - 2 &, 1]\)\), " ", SubscriptBox[ TagBox["c", C], "1"]}], "+", RowBox[{\(\[ExponentialE]\^\(x\ Root[#1\^5 + #1\^4 - #1 - 2 &, 2]\)\), " ", SubscriptBox[ TagBox["c", C], "2"]}], "+", RowBox[{\(\[ExponentialE]\^\(x\ Root[#1\^5 + #1\^4 - #1 - 2 &, 3]\)\), " ", SubscriptBox[ TagBox["c", C], "3"]}], "+", RowBox[{\(\[ExponentialE]\^\(x\ Root[#1\^5 + #1\^4 - #1 - 2 &, 4]\)\), " ", SubscriptBox[ TagBox["c", C], "4"]}], "+", RowBox[{\(\[ExponentialE]\^\(x\ Root[#1\^5 + #1\^4 - #1 - 2 &, 5]\)\), " ", SubscriptBox[ TagBox["c", C], "5"]}]}]}], "}"}], "}"}], TraditionalForm]], "Output"] }, Open ]], Cell[TextData[{ "The reason that the roots of a ", Cell[BoxData[ \(TraditionalForm\`5\^th\)]], " order polynomial arise can be seen from the auxilliary equation (found by \ putting ", Cell[BoxData[ \(TraditionalForm\`v -> Function[x, \[ExponentialE]\^\(r\ x\)]\)]], "): " }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{ RowBox[{\(\[ExponentialE]\^\(\(-r\)\ x\)\), " ", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{\(2\ \(v(x)\)\), "+", RowBox[{ SuperscriptBox["v", "\[Prime]", MultilineFunction->None], "(", "x", ")"}], "-", RowBox[{ SuperscriptBox["v", TagBox[\((5)\), Derivative], MultilineFunction->None], "(", "x", ")"}]}], "==", RowBox[{ SuperscriptBox["v", TagBox[\((4)\), Derivative], MultilineFunction->None], "(", "x", ")"}]}], "/.", \(v -> Function[x, \[ExponentialE]\^\(r\ x\)]\)}], ")"}]}], "//", "Simplify"}], TraditionalForm]], "Input"], Cell[BoxData[ \(TraditionalForm\`r + 2 == r\^4\ \((r + 1)\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`Solve[%, r]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{{r -> Root[#1\^5 + #1\^4 - #1 - 2 &, 1]}, {r -> Root[#1\^5 + #1\^4 - #1 - 2 &, 2]}, {r -> Root[#1\^5 + #1\^4 - #1 - 2 &, 3]}, {r -> Root[#1\^5 + #1\^4 - #1 - 2 &, 4]}, {r -> Root[#1\^5 + #1\^4 - #1 - 2 &, 5]}}\)], "Output"] }, Open ]], Cell[TextData[{ "However, the form of the ", Cell[BoxData[ \(TraditionalForm\`5\^th\)]], " order equation immediately suggests that the solution is of the form ", Cell[BoxData[ \(TraditionalForm\`\[Alpha]\ \(sin(\[Pi]\ x)\) + \[Beta]\ \(cos(\[Pi]\ \ x)\)\)]], ":" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`\[ScriptCapitalE]\_3 /. v -> Function[ x, \[Alpha]\ \(sin(\[Pi]\ x)\) + \[Beta]\ \(cos(\[Pi]\ x)\)] // Simplify\)], "Input"], Cell[BoxData[ \(TraditionalForm\`\((\(-\[Pi]\^5\)\ \((\[Alpha] - 1)\) + \[Pi]\ \((\[Alpha] - 1)\) - \[Pi]\^4\ \[Beta] + 2\ \[Beta])\)\ \(cos(\[Pi]\ x)\) + \((\(-\[Pi]\^4\)\ \[Alpha] + 2\ \[Alpha] + \[Pi]\^5\ \[Beta] - \[Pi]\ \[Beta] + \[Pi]\^4 - 2)\)\ \(sin(\[Pi]\ x)\) == 0\)], "Output"] }, Open ]], Cell["It is easy to compute the undetermined coefficients,", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`Solve[{Coefficient[%, sin(\[Pi]\ x)], Coefficient[%, cos(\[Pi]\ x)]}, {\[Alpha], \[Beta]}]\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{{\[Alpha] -> 1, \[Beta] -> 0}}\)], "Output"] }, Open ]], Cell["\<\ and verify that the solution satisfies the boundary \ conditions.\ \>", "Text"], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"{", RowBox[{\(v(0) == 0\), ",", RowBox[{ RowBox[{ SuperscriptBox["v", "\[Prime]\[Prime]", MultilineFunction->None], "(", "0", ")"}], "==", "0"}], ",", \(v(1) == 0\), ",", RowBox[{ RowBox[{ SuperscriptBox["v", "\[Prime]\[Prime]", MultilineFunction->None], "(", "1", ")"}], "==", "0"}]}], "}"}], "/.", \(v -> Function[x, sin(\[Pi]\ x)]\)}], TraditionalForm]], "Input"], Cell[BoxData[ \(TraditionalForm\`{True, True, True, True}\)], "Output"] }, Open ]], Cell["Now solving the remaining first-order equation is trivial.", "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`DSolve[{\[ScriptCapitalE]\_1 /. v -> Function[x, sin(\[Pi]\ x)], u[0] == 2}, u[x], x] // Simplify\)], "Input"], Cell[BoxData[ \(TraditionalForm\`{{u(x) -> cos(\[Pi]\ x) + \[ExponentialE]\^\(\(-a\)\ x\)}}\)], "Output"] }, Open ]] }, Closed]], Cell[CellGroupData[{ Cell["Mathematica solution", "Section"], Cell[TextData[{ "The ", StyleBox["Mathematica", FontSlant->"Italic"], " solution to the original pair of equations is rather unenlightening:" }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(TraditionalForm\`DSolve[{\[ScriptCapitalE]\_1, \[ScriptCapitalE]\_2}, \ {u(x), v(x)}, x]\)], "Input"], Cell[BoxData[ FormBox[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{\(u(x)\), "->", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "1"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^3 - \[ExponentialE]\^\(\(-DSolve`t\)\ #1\)\ #1\^2 + \[ExponentialE]\ \^\(\(-DSolve`t\)\ #1\)\ #1 - \[ExponentialE]\^\(\(-DSolve`t\)\ #1\)\)\/\(5\ \ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\)\)\ a \ + \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(\(-DSolve`t\)\ #1\ \)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\)\) - \ \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \ \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\^3 - \ \[ExponentialE]\^\(x\ #1\)\ #1\^2 + \[ExponentialE]\^\(x\ #1\)\ #1 - \ \[ExponentialE]\^\(x\ #1\)\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "5"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^3\)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\)\)\ a + \[ExponentialE]\^\(\(-a\)\ \ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^3\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\ \)\) - \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(x\ #1\)\/\(5\ #1\^4 + 4\ \ #1\^3 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "4"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^2\)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\)\)\ a + \[ExponentialE]\^\(\(-a\)\ \ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^2\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\ \)\) - \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\)\/\(5\ #1\^4 + \ 4\ #1\^3 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "3"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \((\(-\[ExponentialE]\^\(\(-a\)\ \ DSolve`t\)\)\ a + \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ \ DSolve`t)\)\) - \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\^2\)\/\(5\ \ #1\^4 + 4\ #1\^3 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "2"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(\(-DSolve`t\)\ #1\ \)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\ \)\)\ a + \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(\(-DSolve`t\)\ #1\ \)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\)\) - \ \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \ \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\^3\)\/\(5\ \ #1\^4 + 4\ #1\^3 - 1\) &]\)}]}]}], ",", RowBox[{\(v(x)\), "->", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "5"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^3\)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\)\)\ a + \[ExponentialE]\^\(\(-a\)\ \ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^3\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\ \)\) - \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(x\ #1\)\/\(5\ #1\^3 - #1\^2 + \ #1 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "4"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^2\)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\)\)\ a + \[ExponentialE]\^\(\(-a\)\ \ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^2\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\ \)\) - \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\)\/\(5\ #1\^3 - \ #1\^2 + #1 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "3"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \((\(-\[ExponentialE]\^\(\(-a\)\ \ DSolve`t\)\)\ a + \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ \ DSolve`t)\)\) - \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\^2\)\/\(5\ \ #1\^3 - #1\^2 + #1 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "2"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(\(-DSolve`t\)\ #1\ \)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\ \)\)\ a + \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(\(-DSolve`t\)\ #1\ \)\/\(5\ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\)\) - \ \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \ \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(x\ #1\)\ #1\^3\)\/\(5\ \ #1\^3 - #1\^2 + #1 - 1\) &]\)}], "+", RowBox[{ RowBox[{"(", RowBox[{ SubsuperscriptBox["\[Integral]", SubscriptBox[ TagBox["c", C], "1"], "x"], \(\((RootSum[#1\^5 + #1\^4 - #1 - 2 &, \(\[ExponentialE]\^\(\(-DSolve`t\)\ \ #1\)\ #1\^3 - \[ExponentialE]\^\(\(-DSolve`t\)\ #1\)\ #1\^2 + \[ExponentialE]\ \^\(\(-DSolve`t\)\ #1\)\ #1 - \[ExponentialE]\^\(\(-DSolve`t\)\ #1\)\)\/\(5\ \ #1\^3 - #1\^2 + #1 - 1\) &]\ \((\(-\[ExponentialE]\^\(\(-a\)\ DSolve`t\)\)\ a \ + \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + cos(\[Pi]\ DSolve`t) - \[Pi]\ \(sin(\[Pi]\ \ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\) + RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(\(-DSolve`t\)\ #1\ \)\/\(5\ #1\^4 + 4\ #1\^3 - 1\) &]\ \((\(-\(cos(\[Pi]\ DSolve`t)\)\) - \ \[ExponentialE]\^\(\(-a\)\ DSolve`t\) + \[Pi]\^4\ \(sin(\[Pi]\ DSolve`t)\) - sin(\[Pi]\ DSolve`t))\))\) \ \[DifferentialD]DSolve`t\)}], ")"}], " ", \(RootSum[#1\^5 + #1\^4 - #1 - 2 &, \[ExponentialE]\^\(x\ #1\)\/\(5\ #1\^4 + 4\ \ #1\^3 - 1\) &]\)}]}]}]}], "}"}], "}"}], TraditionalForm]], "Output"] }, Closed]] }, Closed]] } ] ____________________________________________________________________ Paul Abbott Phone: +61-8-9380-2734 Department of Physics Fax: +61-8-9380-1014 The University of Western Australia Nedlands WA 6907 mailto:paul at physics.uwa.edu.au AUSTRALIA http://physics.uwa.edu.au/~paul God IS a weakly left-handed dice player ____________________________________________________________________