Re: InterpolatingFunction
- To: mathgroup at smc.vnet.net
- Subject: [mg16549] Re: InterpolatingFunction
- From: "Dale Horton" <daleh>
- Date: Tue, 16 Mar 1999 04:00:21 -0500
- Organization: Wolfram Research, Inc.
- References: <7c5ait$7pr@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Take the InputForm of Sol. The t values are embedded in the InterpolatingFunction. For example, In[1]:= sol = NDSolve[{Derivative[1][y][x] == y[x], y[1] == 2}, y, {x, 0, 3}] Out[1]= {{y -> InterpolatingFunction[{{0., 3.}}, "<>"]}} In[2]:= sol[[1, 1, 2, 3, 1]] Out[2]= {0., 0.0532966, 0.253442, 0.343912, 0.434382, 0.524852, 0.615322, 0.705792, 0.751026, 0.796261, 0.841496, 0.886731, 0.942143, 0.960874, 0.979605, 0.998336, 0.999168, 1., 1.00134, 1.00268, 1.02138, 1.04008, 1.05878, 1.11402, 1.16926, 1.22449, 1.27973, 1.37335, 1.46697, 1.56059, 1.65421, 1.74783, 1.89523, 2.04262, 2.19002, 2.33741, 2.48481, 2.63221, 2.8543, 3.} Virgil Stokes wrote in message <7c5ait$7pr at smc.vnet.net>... >I have a nonlinear ODE that I solve numerically with NDSolve and >this of course uses InterpolatingFunction. > >Example: > > Sol = NDSolve[ {LEE[[1]], LEE[[2]],\[Theta]1[0]==\[Theta]10, > \[Theta]1'[0]==\[Theta]1d0, \[Theta]2[0]==\[Theta]20, > \[Theta]2'[0]==\[Theta]2d0}, q,{t,0,tfinal}, AccuracyGoal->18, > PrecisionGoal->18, > WorkingPrecision->36, > MaxSteps->Infinity] (* Forward dynamics *) > >{{\[Theta]1[t] > \[Rule]InterpolatingFunction[{{0, > 2.00000000000000000000000000000000000}},"<>"][t], > \[Theta]2[t] > \[Rule]InterpolatingFunction[{{0, > 2.00000000000000000000000000000000000}},"<>"][t]}} > >** How can I obtain the complete list of domain values used (all t values) > by the InterpolatingFunction? > >-- V. Stokes > > >