       Re: How to find solutions for conditioned equations?

• To: mathgroup at smc.vnet.net
• Subject: [mg19909] Re: [mg19861] How to find solutions for conditioned equations?
• From: "Wolf, Hartmut" <hwolf at debis.com>
• Date: Tue, 21 Sep 1999 02:22:45 -0400
• Organization: debis Systemhaus
• References: <199909190520.BAA10200@smc.vnet.net.>
• Sender: owner-wri-mathgroup at wolfram.com

```Wen-Feng Hsiao schrieb:
>
> Suppose I have an equation
>
> A(x)= (x+1)/2, for -1<x<=1
>     = (3-x)/2, for 1<x<=3
>     = 0      , otherwise
>
> Now if I want to find solutions for A(x)==a, how can I otain the
> solutions simultaneously (i.e., represented as (2a-1, 3-2a))? I always
> use the stupid method to solve them separately, but I found it's laborous
> when I have B(x), C(x) needed to be solved together. (I am trying to use
> alpha-cut to proceed the interval operations) Any suggestions?

Dear Hsiao,

what to do best, depends on your intents. If you continually use the
triangle-functions (e.g. as fuzzy sets) then an idea would be to define
your own appropriate funtional calculus, e.g. as such:

A[x_, x0_, width_] :=
(x - x0 + width)/width  UnitStep[x - x0 + width] UnitStep[-(x - x0)]
- (x - x0 - width)/width  UnitStep[-(x - x0 - width)] UnitStep[x - x0]

(width is the width at half height), so you have a function you can
integrate, differentiate etc., or e.g.

In:= Plot[A[x, 1, 2], {x, -2, 4}]

To find the inverse, calculate once (by hand):

Ainvers[a_, x0_, width_] := If[0 <= a <= 1, width {-1, 1}(1 - a) +
x0,{}]

In:= Simplify[Ainvers[a, 1, 2], 0 <= a <= 1]
Out= {-1 + 2 a, 3 - 2 a}

Of course if you want to deal with the case a==0 you may include
Interval[{-Infinity, -width + x0}, {width + x0, Infinity}] or not, that
depends on what you want, perhaps that could be something more like

In:= chi[A, a_, x0_, width_] :=
If[0 <= a <= 1, Interval[width {-1, 1}(1 - a) + x0] ]

In:= chi[A, 1/2, 1, 2]
Out= Interval[{0, 2}]
In:= chi[A, 1, 1, 2]
Out= Interval[{1, 1}]
In:= chi[A, 0, 1, 2]
Out= Interval[{-1, 3}]

Kind regards, hw

```

• Prev by Date: Re: Limits of multi-var. functions
• Next by Date: Re: How to find solutions for conditioned equations?
• Previous by thread: How to find solutions for conditioned equations?
• Next by thread: Re: How to find solutions for conditioned equations?