Re: A (little?) problem in Number Theory
- To: mathgroup at smc.vnet.net
- Subject: [mg19954] Re: [mg19914] A (little?) problem in Number Theory
- From: "Andrzej Kozlowski" <andrzej at tuins.ac.jp>
- Date: Wed, 22 Sep 1999 04:11:27 -0400
- Sender: owner-wri-mathgroup at wolfram.com
O.K. Here is a solution. It has little to do with Mathematica. Since, however, your question managed to pass the moderator I hope my proof will also do so:-) However, to make it more likely I shall give a Mathematica implementation of this solution at the end, although in reality it is completely useless: you get an overflow before you get the fifth term of the sequence. If I understand you correctly, you want to show that you can choose a subsequence of the sequence {(2^n)-3} consisting of numbers which are mutually relatively prime. I shall first prove the following lemma: Lemma. Given an odd integer m, there is a number of the form 2^k -3 which is relatively prime to m. Proof. Consider 2^EulerPhi[m]. By Euler's theorem (generalization of Fermat's little theorem) this is equal to 1 mod m. Hence 2^EulerPhi[m]-3 leaves the remainder -2 on division by m. Since m is odd it has to be relatively prime to m. Now we proceed as follows. Start with n=1, so you get 1 and n=2, so you get 5. Take their product, which is 5. Now we take 2^EulerPhi[5]-3=16-3=13. which is relatively prime to both 1 and 5. So the new sequence is {1,5,13}. Multiply all these numbers to get 65 and take 2^EulerPhi[65]-3 as your next term. This is as far as you can go with Mathematica. Here is an implementation: In[1]:= bobic0 = {2^2 - 3, 2^3 - 3}; In[2]:= next[l_List] := Append[l, 2^EulerPhi[Apply[Times, l]] - 3] In[3]:= bobic[n_] := Nest[next, bobic0, n] In[4]:= bobic[1] Out[4]= {1, 5, 13} In[5]:= bobic[2] Out[5]= {1, 5, 13, 281474976710653} however In[6]:= bobic[3] General::"ovfl": "Overflow occurred in computation." Out[6]= {1, 5, 13, 281474976710653, Overflow[]} -- Andrzej Kozlowski Toyama International University JAPAN http://sigma.tuins.ac.jp http://eri2.tuins.ac.jp ---------- >From: Freed Bobic <freed at muenster.de> To: mathgroup at smc.vnet.net >To: mathgroup at smc.vnet.net >Subject: [mg19954] [mg19914] A (little?) problem in Number Theory >Date: Tue, 21 Sep 1999 02:22:48 -0400 > > Hello everybody, > > I need a little help. My problem sounds easy, but I don't think it is: > > Show that there is an infinite subsequence of {(2^n)-3} with pairwise > coprime elements. > > I tried it in different ways, but I didn't manage it. > For example, thinking about prime numbers as elements of that sequence > and prooving somthing like: > "there are infinitly many prime numbers of the form 2^n-3" > gave no result. It seems not to be that easy: think about that there is > no proove about the number of the Mersenne Prime Numbers (2^n-1)... > > Well, I don't know. Please try it and mail your results directly to > freed at muenster.de - because I'm not able to visit the groups very often. > > Thanks a lot, > Gregor Gruening (freed at muenster.de) > > Und nochmal fuer deutschsprechende Mathematiker: > > Ich habe ein Problem mit der Folge {(2^n)-3}. Ich soll zeigen, dass > es eine unendliche Teilfolge mit paarweise teilerfremden Elementen gibt. > > Klingt leicht, ist es aber nicht - denke ich zumindest. Ich habe > jedenfalls schon sehr mit dem Problem gekaempft. Der naheliegenste > Weg, zu beweisen, es gebe unendlich viele Primzahlen der Form 2^n-3, > fuehrt jedenfalls zu keinem schnellen Ergebniss. Man kommt naemlich > recht schnell zu dem Problem, zeigen zu muessen, es gebe unendlich > viele Mersennesche Primzahlen (2^n-1) - und das ist meines Wissens > noch niemandem gelungen. > > Es muss irgendwie recht elementar gehen. Ich brauche einen guten Tip. > Fuer weitere Infos stehe ich natuerlich gerne zu Verfuegung. > > Schreibt mir schnell (am besten auch direkt an meine Adresse). > Gregor Gruening (freed at muenster.de) >