Re: best solution?
- To: mathgroup at smc.vnet.net
- Subject: [mg22907] Re: [mg22899] best solution?
- From: Hartmut Wolf <hwolf at debis.com>
- Date: Thu, 6 Apr 2000 02:04:27 -0400 (EDT)
- Organization: debis Systemhaus
- References: <200004050241.WAA01036@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Peter Weijnitz schrieb: > > I have a function e.g F[a,b,c,x] =a Sin[b x +c] and a number of parameter > triplets > k={{a1,b1,c1},{a2,b2,c2},{a3,b3,c3},....}. > I would like to feed my function the parameter values in an good and simple > way, how? > > (Picking out the elements like k[[3,2]]=b3 e.t.c is not what I want.) Dear Peter, if you have your function defined as F[a_, b_, c_, x_] := a Sin[b x + c] k = {{a1, b1, c1}, {a2, b2, c2}, {a3, b3, c3}} then ... In[2]:= F[##, x] & @@@ k Out[2]= {F[a1, b1, c1, x], F[a2, b2, c2, x], F[a3, b3, c3, x]} ... is a way to do it. If you define F as F[a_, b_, c_][x_] := a Sin[b x + c] In[3]:= Through[(F @@@ k)[x]] Out[3]= {F[a1, b1, c1][x], F[a2, b2, c2][x], F[a3, b3, c3][x]} ... or as F[x][a, b, c] := a Sin[b x + c] In[4]:= F[x] @@@ k Out[4]= {F[x][a1, b1, c1], F[x][a2, b2, c2], F[x][a3, b3, c3]} (If you don't have version 4, then replace @@@ by the alternative input form: In[5]:= Hold[F[x] @@@ k] // InputForm Out[5]//InputForm= Hold[Apply[F[x], k, {1}]] ) If you define your F as F[{a_, b_, c_}, x_] := a Sin[b x + c] then In[7]:= F[#, x] & /@ k Out[7]= {F[{a1, b1, c1}, x], F[{a2, b2, c2}, x], F[{a3, b3, c3}, x]} etc, etc. So far there is no "best" (would depend one finer details not specified here). Hartmut
- References:
- best solution?
- From: "Peter Weijnitz" <peter.weijnitz@perimed.se>
- best solution?