[Date Index]
[Thread Index]
[Author Index]
Re: Mesh
*To*: mathgroup at smc.vnet.net
*Subject*: [mg23067] Re: Mesh
*From*: "Allan Hayes" <hay at haystack.demon.co.uk>
*Date*: Sat, 15 Apr 2000 03:00:25 -0400 (EDT)
*References*: <8d0qte$4v8@smc.vnet.net>
*Sender*: owner-wri-mathgroup at wolfram.com
Adam,
Below the line *********** I copy a package that Hartmut Wolf and I have
been working on for some time that you may find useful. This is still work
in progress and not tested as thoroughly as we would like - also we have
some further developments in mind.
A selection of examples is given at the end.
--
Allan
---------------------
Allan Hayes
Mathematica Training and Consulting
Leicester UK
www.haystack.demon.co.uk
hay at haystack.demon.co.uk
Voice: +44 (0)116 271 4198
Fax: +44 (0)870 164 0565
"Adam Halverson" <ahalvers at reed.edu> wrote in message
news:8d0qte$4v8 at smc.vnet.net...
> Is there a way to change mesh density so that it isn't 1:1 with
> PlotPoints? When plotting some rapidly varying functions, I need to up
> the PlotPoints, but the Mesh gets so dense that the entire plot is
> black. I don't want to plot without the mesh because it's tough to see
> how some of the smaller parts of the functions are changing without
> it...
>
> thanks
****************************************************************************
*********
(* :Name: Smooth3D` *)
(* :Title: Smooth3D *)
(* :Author: Allan Hayes, Hartmut Wolf*)
(* :Package Version: 1.0 *)
(* :Mathematica Version: 4.0 *)
(*:Summary:
This package supports the functions Plot3D, ParametricPlot3D and its
derivatives CylindricalPlot3D and SphericalPlot3D.
This allows to draw the 3D plots at higher resolution and keep the
size of the mesh.
*)
(* :History:
Created November 1999 / April 2000 by Allan Hayes and Hartmut Wolf.
*)
BeginPackage[ "Smooth3D`", "Graphics`ParametricPlot3D`",
"Utilities`FilterOptions`"]
Smooth3D::usage = "Smooth3D allows to increase the resolution of the plots
with Plot3D, ParametricPlot3D, CylindricalPlot3D,
or SphericalPlot3D, without increasing the size of the mesh.
\nSmooth3D[<plotfunction>[<parms>, (plot options..)], (mesh options..)]
where <plotfunction> is the plotting procedure and parameters <parms> are
supplied as to plot
a function (or a list of functions for ParametricPlot3D) at \"normal\"
resolution (as determined by PlotPoints)\nOption MeshScale -> n
increases the linear resolution by a factor of n.";
MeshScale::usage = "MeshScale -> n or MeshScale -> {n, m}, n,m Integers
increases the linear resolution of the plot by effectively multiplying
with PlotPoints but does not increase the mesh size.
\nDefault is three";
MeshLines::usage = "With MeshLines -> Automatic mesh size is according
to the setting of option PlotPoints,
MeshLines -> n or MeshLines -> {n, m} may override that.
If specified differently for the plot variables, n corresponds
to the first, m to the second one, i.e. defines the number of
mesh lines with variable == const.\nDefault is Automatic";
MeshStyle::usage = MeshStyle::usage <> "\n\nWith Smooth3D MeshStyle can also
be
applied to ParametricPlot3D and related functions";
Begin[ "`Private`"]
Attributes[Smooth3D] = HoldFirst;
Options[Smooth3D] = {MeshStyle -> {}, MeshLines -> Automatic, MeshScale ->
3};
Smooth3D[(plotfn_)[{f__List}, xrng_, yrng_, opts___], lineopts___?OptionQ]
:= Show[Block[{$DisplayFunction = Identity},
Smooth3D(*2*)[plotfn[#, xrng, yrng, opts], lineopts] & /@ {f}
], DisplayFunction -> $DisplayFunction];
Smooth3D[(plotfn_)[fun_, xrng_, yrng_, opts___], lineopts___?OptionQ] :=
Module[ {stl, scl, lns, offset, pp, topp, ppfn, ppEnlarged, g, gNoMesh,
gpoints, pointarray, xLines, yLines, plotopts},
(*get option values*)
{stl, scl,
lns} = {MeshStyle, MeshScale, MeshLines} /. Flatten[{lineopts,
opts}] /.
Options[Smooth3D];
pp = PlotPoints /. Flatten[{opts, lineopts}] /.
Options[plotfn] /. {Automatic -> If[plotfn === Plot3D, 15, 20]};
pp = {1, 1} pp;
(* deal with Automatic in MeshLines*)
lns = Replace[lns, {Automatic -> pp, {Automatic, Automatic} -> pp,
{Automatic, yp_} -> {pp[[1]], yp}, {xp_, Automatic} -> {xp,
pp[[2]]},
n_Integer :> {n, n}}];
(*PlotPoints for smoother plot*)
offset = Ceiling[(pp - 1)/(lns - 1) scl];
ppEnlarged = (lns - 1) offset + 1;
g = With[{plotopts = FilterOptions[plotfn, {opts, lineopts}]},
plotfn[fun, xrng, yrng,
DisplayFunction -> Identity,
PlotPoints -> ppEnlarged,
plotopts
]];
If[plotfn === Plot3D, g = Graphics3D[g]];
(*make the edgeless polygons for smoothed graphics*)
gNoMesh =
g /. {{st__?(Head[#] =!= Polygon &), p_Polygon} -> {st, EdgeForm[],
p},
p_Polygon -> {EdgeForm[], p}};
(** make the styled grid lines **)
(* list of quadruples of points used in polygons*)
gpoints = Cases[g, Polygon[pts_] -> pts, Infinity];
If[plotfn === Plot3D, gpoints = RotateLeft[gpoints, {0, 1}]];
(*make the points used in gpoints into an array*)
pointarray = MapAt[RotateRight[#, 2] &,
Transpose[
Append[#, RotateRight[Last[#], {0, -1}]] &[
Transpose[
Append[
#,
RotateRight[Last[#], {0, 1}]] &[
Partition[gpoints, ppEnlarged[[1]] - 1]]
]]],
{{-1, -1}}][[All, All, 1]];
(* the styled lines *)
stl = Replace[stl, {stl__} :> stl];
xLines =
{stl,
Line /@ (Flatten[#, 1] & /@ Partition[pointarray, 1, offset[[2]]])};
yLines = {stl,
Line /@ (Flatten[#, 1] & /@
Partition[Transpose[pointarray], 1, offset[[1]]])};
(*combine and show*)
Show[gNoMesh, Graphics3D[{xLines, yLines}],
DisplayFunction -> $DisplayFunction]
]
End[]
EndPackage[]
(*:Examples:
Smooth3D[CylindricalPlot3D[
{Sin[5f], Hue[f/6Pi, .4, 1]}, {r, 2, 4}, {f, 0, 2 Pi},
PlotPoints -> {2, 30},
Lighting -> False
],
MeshScale -> {1, 3}, MeshLines -> {2, 50},
MeshStyle -> {Thickness[.001], Hue[.6]}
];
Smooth3D[ParametricPlot3D[{x, y, Sin[x + Cos[y]], {Hue[(x + y)/12, .5, 1]}}
, {x, 1, 4}, {y, 1, 5},
Lighting -> False], MeshStyle -> Hue[.7]
, MeshLines -> 4
];
Smooth3D(*2*)[
ParametricPlot3D[{x, y, Sin[x + Cos[y]], {Hue[(x + y)/12, .5, 1]}}
, {x, 1, 4}, {y, 1, 5},
Lighting -> False], MeshStyle -> {Thickness[.015], Hue[0]},
MeshScale -> 1/7, MeshLines -> 4
];
Smooth3D[ParametricPlot3D[{x, y, Sin[x + Cos[y]], {Hue[(x + y)/12, .5, 1]}}
, {x, 1, 4}, {y, 1, 5}, PlotPoints -> {3, 4},
Lighting -> False, AxesLabel -> {"x", "y", "z"}],
MeshStyle -> {Thickness[.015], Hue[0.45, 0.6, 1]},
MeshScale -> {7, 5}, MeshLines -> {4, 5}
];
Smooth3D[ParametricPlot3D[{
{x, y, Sin[x + Cos[y]], {Hue[(x + y)/12, .5, 1]}},
{x, y, Cos[x + Sin[y]], GrayLevel[.5]}},
{x, 1, 4}, {y, 1, 5},
Lighting -> False], MeshStyle -> Hue[.7, 0.3, 1]
, MeshLines -> 4
];
Smooth3D[Plot3D[{Sin[x + Cos[y]], Hue[x, .4, 1]}, {x, 1, 4}, {y, 1, 5},
PlotPoints -> {5, 5}, MeshStyle -> {Thickness[0.01], GrayLevel[0.8]}],
MeshScale -> {3, 3}
];
Smooth3D[Plot3D[Sin[x + Cos[y]], {x, 1, 4}, {y, 1, 5},
ColorFunction -> (Hue[.85 #, .6, 1] &),
PlotPoints -> 5], MeshScale -> 10];
Plot3D[Sin[x y], {x, 0, \[Pi]}, {y, 0, \[Pi]}] // Smooth3D;
Smooth3D[Plot3D[Sin[x y], {x, 0, -3\[Pi]/2}, {y, 0, -3\[Pi]/2},
BoxRatios -> {1, 1, 0.2}], MeshScale -> 7];
Smooth3D[Plot3D[Cos[x y]Sin[x], {x, 0, 3\[Pi]/2}, {y, 0, 2\[Pi]},
BoxRatios -> {1, 1.5, 0.3}], PlotPoints -> {15, 20}, MeshScale -> 7];
Smooth3D[SphericalPlot3D[{2,Hue[(theta+phi)/6]},
{theta,0,Pi},{phi, 0,2Pi},PlotPoints ->5,
Lighting ->False],MeshLines -> 5]
*)
Prev by Date:
**Re: NestWhile**
Next by Date:
**Re: Fast List Manipulation & more - some results**
Previous by thread:
**RE: Mesh**
Next by thread:
**Can't read packages**
| |