Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2000
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2000

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Symbols & Legend Fonts in MultipleListPlot...

  • To: mathgroup at smc.vnet.net
  • Subject: [mg23379] Re: [mg23360] Symbols & Legend Fonts in MultipleListPlot...
  • From: "Arturas Acus" <acus at itpa.lt>
  • Date: Fri, 5 May 2000 02:07:12 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

Dear Mark, 
the following excerpt may help You.


In[2]:=
<<Graphics`MultipleListPlot`
<< Graphics`Legend`

In[4]:=
$Version

Out[4]:=
"4.0 for Linux (April 21, 1999)"

One can make
circle with  MakeSymbol command. However if You do that, then Aspect
Ratio will be wrong: actually You will see elipses. I "fixed" this
little bug (?) using RegularPolygon[] command with very large number of
corners. Of course this slowns down rendering, otherwise it works
well. You can also make symbols You would like. I use the "dagg"
symbol below. I was able to adjust text style used in legend with
StyleForm[] command, which can also change font family, etc.
Here I changed only FontSize. See example below.

In[5]:=
ShowLegend[Show[Graphics[{Thickness[0.001], Line[{{1., 0.098425},
{0.6, 0.18}}], Text[" j={1/2,1/2,1}", {0.6, 0.18}, {-1, 0}, 
      TextStyle -> {FontSlant -> Italic, FontSize -> 6}],
      Thickness[0.001], Line[{{0.5, 0.126286}, {0.4, 0.14}}], 
     Text["j=1/2", {0.4, 0.14}, {1, -1}, TextStyle -> {FontSlant ->
     Italic, FontSize -> 6}], Thickness[0.001], Line[{{0.0126,
     0.0597}, {0.04, 0.067}}], Text["j=1", {0.04, 0.067}, {-1, 0}, 
      TextStyle -> {FontSlant -> Italic, FontSize -> 6}],
      Thickness[0.001], Line[{{0.02, 0.0455}, {0.05, 0.05}}], 
     Text["j=3/2", {0.05, 0.05}, {-1, 0}, TextStyle -> {FontSlant ->
     Italic, FontSize -> 6}]}], Ticks -> {Automatic, Automatic}, 
   PlotRange -> {{0, 2.05}, {0, 0.2}}, Frame -> True, FrameLabel ->
   {"\!\(Q\^2\)\!\(\((GeV/c)\)\^2\)", 
     "\!\(G\_E\%n\)(\!\(Q\^2\))", "", ""}, RotateLabel -> True,
     ImageSize -> 360, DisplayFunction -> Identity], 
  {{{Graphics[{AbsoluteThickness[0.1], Line[{{0, 0}, {1., 0}}]}],
  StyleForm["Quantum Skyrme model", FontSize -> 8]}, 
    {Graphics[{Thickness[0.03], AbsoluteDashing[{0.9, 7, 7, 7}],
    Line[{{0, 0}, {1., 0}}]}], 
     StyleForm["Semiclassical Skyrme", FontSize -> 8]}, 
    {Graphics[{Thickness[0.03], AbsoluteDashing[{5, 5}], Line[{{0, 0},
    {1., 0}}]}], StyleForm["Dipole Fit", FontSize -> 8]},
    {MultipleListPlot[{{0, 0}}, SymbolShape -> {{AbsolutePointSize[4],
    Point[#1]} & }, DisplayFunction -> Identity, 
      Axes -> False], StyleForm["Experiment [?]", FontSize -> 8]}, 
    {MultipleListPlot[{{0, 0}}, SymbolShape -> 
       {MakeSymbol[{Line[4*(MapAt[#1*N[1] & , #1, 2] & ) /@ {{0.75,
       0.25}, {0.25, 0.25}, {0.25, 0.75}, {-0.25, 0.75}, 
              {-0.25, 0.25}, {-0.75, 0.25}, {-0.75, -0.25}, {-0.25,
              -0.25}, {-0.25, -0.75}, {0.25, -0.75}, {0.25, -0.25},
              {0.75, -0.25}, {0.75, 0.25}}]}]}, DisplayFunction ->
              Identity, Axes -> False], 
     StyleForm["Experiment [?]", FontSize -> 8]}, 
    {MultipleListPlot[{{0, 0}}, SymbolShape ->
    {MakeSymbol[RegularPolygon[4, 4, 0]]}, DisplayFunction ->
    Identity, Axes -> False], 
     StyleForm["Experiment [?]", FontSize -> 8]},
     {MultipleListPlot[{{0, 0}}, SymbolShape -> {PlotSymbol[Triangle,
     6]}, 
      DisplayFunction -> Identity, Axes -> False],
      StyleForm["Experiment [?]", FontSize -> 8]}, 
    {MultipleListPlot[{{0, 0}}, SymbolShape ->
    {MakeSymbol[RegularPolygon[3, 4]]}, DisplayFunction -> Identity,
    Axes -> False], 
     StyleForm["Experiment [?]", FontSize -> 8]},
     {MultipleListPlot[{{0, 0}}, SymbolShape ->
     {MakeSymbol[RegularPolygon[500, 3]]}, 
      DisplayFunction -> Identity, Axes -> False],
      StyleForm["Experiment [?]", FontSize -> 8]}, 
    {MultipleListPlot[{{0, 0}}, SymbolShape ->
    {MakeSymbol[RegularPolygon[4, 4, 0, Pi/4]]}, DisplayFunction ->
    Identity, 
      Axes -> False], StyleForm["Experiment [?]", FontSize -> 8]}, 
    {MultipleListPlot[{{0, 0}}, SymbolShape -> {PlotSymbol[Box, 3.5]},
    DisplayFunction -> Identity, Axes -> False], 
     StyleForm["Experiment [?]", FontSize -> 8]}}, LegendPosition ->
     {0.2, 0.07}, LegendSize -> {0.77, 0.5}, 
   LegendTextSpace -> 3., LegendSpacing -> -0.12, LegendShadow ->
   None}, ImageSize -> 360]

(* graphics deleted *)


> Date:          Thu, 4 May 2000 02:59:28 -0400 (EDT)
> From:          "Mark Harder" <harderm at ucs.orst.edu>
To: mathgroup at smc.vnet.net
> To:            mathgroup at smc.vnet.net
> Subject: [mg23379]       [mg23360] Symbols & Legend Fonts in MultipleListPlot...

> 
>     I finally figured out how to create a list plot of multiple data, 
> with color encoding for the different data series, and a Legend 
> identifying the data by symbol & color-- by employing MultipleListPlot.  
> I also employed the DefaultFont directive (DefaultFont->{"Helvetica",10} 
> ) to set the default font.  In Wickham-Jones, p.323, there is an example 
> of this usage, which also sets the font for the Legend descriptors.  
> However, in my case (Mathematica, v4.0; WinNTv.4.0) while axes numbers 
> are changed by DefaultFont, the Legend fonts are not changed & I can't 
> find any way to set the Legend fonts separately.  How do I set my legend 
> fonts?  The default ones are awfully small. 
> 
>     Also, is there any way to get MultipleListPlot to recognize Circle 
> or Disk as valid point styles?  It seems odd that it takes stars, 
> triangles, etc;, but not circles.
> 
>     By the way ?Legend returns a message that indicates that FontForm[] 
> can still be used, while the only entry for FontForm in the online docs 
> states that it was obsolete as of v. 3.0.  I suspect the latter is true, 
> in which case the information for Legend should be corrected.  Or, 
> correct me if I am wrong.
> Regards,
> mark e. harder
> harderm at ucs.orst.edu
> 
> 
> 
> 
                                     
Dr. Arturas Acus
Institute of Theoretical
Physics and Astronomy
Gostauto 12, 2600,Vilnius
Lithuania 


E-mail: acus at itpa.lt
   Fax: 370-2-225361
   Tel: 370-2-612906


  • Prev by Date: Multiple Headers in Complex Data File
  • Next by Date: Re: Question: Fitting numerical solutions of ord. diff. equ.
  • Previous by thread: Symbols & Legend Fonts in MultipleListPlot...
  • Next by thread: Re: Symbols & Legend Fonts in MultipleListPlot...