Re: Difficult integral
- To: mathgroup at smc.vnet.net
- Subject: [mg23464] Re: [mg23417] Difficult integral
- From: Rolf Mertig <rolfm at xs4all.nl>
- Date: Thu, 11 May 2000 00:54:14 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
The problem is that Mathematica's Factor is sometimes not optimal. One possibility to do you Integral is to use linearity and some fiddling (probably you can guess the general form quite easily). In[1]:= $PrePrint=InputForm; In[2]:= i[rho_]:=Map[Factor,(ExpandAll//@Numerator[#])/Denominator[#]]&[ Together[Map[Function[z,Integrate[z,{x,0,2Pi}]],Expand[TrigToExp[ Sin[x]^(2 rho) Exp[I n x] ] ] ] ] ] In[3]:= i at 4 Out[3]= (-40320*I*(-1 + E^(I*n*Pi))*(1 + E^(I*n*Pi)))/((-8 + n)*(-6 + n)*(-4 + n)* (-2 + n)*n*(2 + n)*(4 + n)*(6 + n)*(8 + n)) In[4]:= i at 10 // Timing Out[4]= {32.02*Second, (-2432902008176640000*I*(-1 + E^(I*n*Pi))*(1 + E^(I*n*Pi)))/ ((-20 + n)*(-18 + n)*(-16 + n)*(-14 + n)*(-12 + n)*(-10 + n)*(-8 + n)* (-6 + n)*(-4 + n)*(-2 + n)*n*(2 + n)*(4 + n)*(6 + n)*(8 + n)*(10 + n)* (12 + n)*(14 + n)*(16 + n)*(18 + n)*(20 + n))} In[5]:= Timing[i at 12] Out[5]= {35.87*Second, (-620448401733239439360000*I*(-1 + E^(I*n*Pi))* (1 + E^(I*n*Pi)))/((-24 + n)*(-22 + n)*(-20 + n)*(-18 + n)*(-16 + n)* (-14 + n)*(-12 + n)*(-10 + n)*(-8 + n)*(-6 + n)*(-4 + n)*(-2 + n)*n* (2 + n)*(4 + n)*(6 + n)*(8 + n)*(10 + n)*(12 + n)*(14 + n)*(16 + n)* (18 + n)*(20 + n)*(22 + n)*(24 + n))} In[6]:= Timing[i at 14] Out[6]= {51.769999999999996*Second, (-304888344611713860501504000000*I* (-1 + E^(I*n*Pi))*(1 + E^(I*n*Pi)))/((-28 + n)*(-26 + n)*(-24 + n)* (-22 + n)*(-20 + n)*(-18 + n)*(-16 + n)*(-14 + n)*(-12 + n)*(-10 + n)* (-8 + n)*(-6 + n)*(-4 + n)*(-2 + n)*n*(2 + n)*(4 + n)*(6 + n)*(8 + n)* (10 + n)*(12 + n)*(14 + n)*(16 + n)*(18 + n)*(20 + n)*(22 + n)*(24 + n)* (26 + n)*(28 + n))} - - - Rolf Mertig Mertig Research & Consulting http://www.mertig.com