Re: Help on solving simultaneous non-linear equations using FindRoot.
- To: mathgroup at smc.vnet.net
- Subject: [mg28520] Re: [mg28505] Help on solving simultaneous non-linear equations using FindRoot.
- From: "Mark Harder" <harderm at ucs.orst.edu>
- Date: Tue, 24 Apr 2001 01:48:54 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Youyan, I spent considerable time trying to get your code into acceptable Mathematica format, but I could not without a lot more effort, which you could more easily have done yourself, had you learned more Mathematica. I have included a notebook with my efforts so far, and the resulting error messages. These messages occur because expressions like p[1] are not recognized by Mathematica as symbols for your variables, but as functions, unless they are assigned; see the documentation for syntax for functions, etc.. Since I didn't know what initial values to use, I didn't use the {variable,min,initial,max} form for variable specifications (also see below). Instead I used the secant method specifications; and I had to substitute some nonzero values (.001) for 0, and 10 for Infinity). Some particular problems I had understanding your note: >If I take one endogenous >variable out of the system and let it to be a given parameter,, and also >reduce the system into 9 equations, I can get a solution that looks like >converged,.. I don't think so. Remove one variable from alist of 12, and you have 11 variables to solve from 9 equations, and I don't think that will a finite number of solutions, but rather a set of surfaces in some 12-space. You didn't list p[A] either as a parameter or a variable, so I assigned it to 1 (making it a fixed parameter), which caused Mathematica to complain about 12 equations and 11 variables. Therefore, I made it the 12th variable, with 12 equations. >but some of the variables have negative values, which are not >what I expected. How do you know that negative values are not also solutions? Did you plug their values into your system of equations and test them? FindRoot requires initial guesses when you give it min..max constraints. Perhaps your choice of guesses won't converge within the limit of iterations (15 by default); or else some variable(s) lie outside their constraints. I just noticed that In your text, you use FindRoot with only initial values, so that no constraints are given. In this form, FindRoot is free to wander anywhere in Real^12. If you really did what you show, that is probably why negative values were returned, possibly when the limit on iterations was reached. Maybe you will have better luck getting a reply if you translate your code into Mathematica, and clarify your query. -mark harder harderm at ucs.orst.edu -----Original Message----- From: Youyan Li <youyanli at acsu.buffalo.edu> To: mathgroup at smc.vnet.net Subject: [mg28520] [mg28505] Help on solving simultaneous non-linear equations using FindRoot. >Hi, > >I am trying to solve a 12-eqaution simultaneous non-linear equations using >FindRoot function in Mathematica. This system of equations has 9 given >parameter values and I need to solve for 12 unknown variables. But I have >the problem in getting the system converged. If I take one endogenous >variable out of the system and let it to be a given parameter, and also >reduce the system into 9 equations, I can get a solution that looks like >converged, but some of the variables have negative values, which are not >what I expected. I expect all the variables have non-negative values. >If I specify the range of the variables, usually I cannot get a solution >at all. I wonder how to solve this problem. Or how to get an acceptable >solution for this system? Is there any trick of solving large system of >simultaneous non-linear equations using FindRoot? > >Below is my problem that I converted from another program, because I don't >know how to save a mathematica program into a text file correctly. If you >could help, would you please take a look at it? Sorry it may look long. I >am trying to solve functions f[1] to f[12] simultaneously. > > > > >> M:=3/5; L:=1.0; c[1]:=1.0; c[2]:=1.0; mu:=2/5; sigma:=5; F[1]:=1.0; >F[2]:=1.0; T:=3/2; > > M := 3/5 > > > L := 1.0 > > > c[1] := 1.0 > > > c[2] := 1.0 > > > mu := 2/5 > > > sigma := 5 > > > F[1] := 1.0 > > > F[2] := 1.0 > > > T := 3/2 > >> >f[1]:=(mu*Y[1]-w[1]*c[1]/p[11])*p[11]^(1-sigma)/(n[1]*p[11]^(1-sigma)+n[2]* p[21]^(1-sigma))+(mu*Y[2]-w[1]*c[1]*T/p[12])*p[12]^(1-sigma)/(n[1]*p[12]^(1- sigma)+n[2]*p[22]^(1-sigma))=w[1]*F[1]; > > 1.0 w[1] 1.500000000 w[1] > 2/5 Y[1] - -------- 2/5 Y[2] - ---------------- > p[11] p[12] > f[1] := ------------------------ + --------------------------- > 4 / n[1] n[2] \ 4 / n[1] n[2] \ > p[11] |------ + ------| p[12] |------ + ------| > | 4 4| | 4 4| > \p[11] p[21] / \p[12] p[22] / > > 1.0 w[1] > >> > >> >f[2]:=(mu*Y[1]-w[2]*c[2]*T/p[21])*p[21]^(1-sigma)/(n[1]*p[11]^(1-sigma)+n[2 ]*p[21]^(1-sigma))+(mu*Y[2]-w[2]*c[2]/p[22])*p[22]^(1-sigma)/(n[1]*p[12]^(1- sigma)+n[2]*p[22]^(1-sigma))=w[2]*F[2]; > > 1.500000000 w[2] 1.0 w[2] > 2/5 Y[1] - ---------------- 2/5 Y[2] - -------- > p[21] p[22] > f[2] := --------------------------- + ------------------------ > 4 / n[1] n[2] \ 4 / n[1] n[2] \ > p[21] |------ + ------| p[22] |------ + ------| > | 4 4| | 4 4| > \p[11] p[21] / \p[12] p[22] / > > 1.0 w[2] > >> >f[3]:=n[1]*(c[1]*mu*(Y[1]*p[11]^(-sigma)/(n[1]*p[11]^(1-sigma)+n[2]*p[21]^( 1-sigma))+T*Y[2]*p[12]^(-sigma)/(n[1]*p[12]^(1-sigma)+n[2]*p[22]^(1-sigma))) +F[1])=M*lambda; > > / Y[1] > f[3] := n[1] |.4000000000 ------------------------ > | 5 / n[1] n[2] \ > | p[11] |------ + ------| > | | 4 4| > \ \p[11] p[21] / > > .6000000000 Y[2] \ > + ------------------------ + 1.0| = 3/5 lambda > 5 / n[1] n[2] \ | > p[12] |------ + ------| | > | 4 4| | > \p[12] p[22] / / > >> >f[4]:=n[2]*(c[1]*mu*(T*Y[1]*p[21]^(-sigma)/(n[1]*p[11]^(1-sigma)+n[2]*p[21] ^(1-sigma))+Y[2]*p[22]^(-sigma)/(n[1]*p[12]^(1-sigma)+n[2]*p[22]^(1-sigma))) +F[2])=M*(1-lambda); > > / Y[1] > f[4] := n[2] |.6000000000 ------------------------ > | 5 / n[1] n[2] \ > | p[21] |------ + ------| > | | 4 4| > \ \p[11] p[21] / > > .4000000000 Y[2] \ > + ------------------------ + 1.0| = 3/5 - 3/5 lambda > 5 / n[1] n[2] \ | > p[22] |------ + ------| | > | 4 4| | > \p[12] p[22] / / > >> >f[5]:=(1+(n[1]*p[11]^(1-sigma)+n[2]*p[21]^(1-sigma))/((sigma-1)*(n[1]*p[11] ^(1-sigma)+n[2]*p[21]^(1-sigma)-p[11]^(1-sigma))))*w[1]*c[1]=p[11]; > > / / n[1] n[2] \ \ > | 1/4 |------ + ------| | > | | 4 4| | > | \p[11] p[21] / | > f[5] := 1.0 |1 + ------------------------| w[1] = p[11] > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[11] p[21] p[11] / > >> >f[6]:=(1+(n[1]*p[12]^(1-sigma)+n[2]*p[22]^(1-sigma))/((sigma-1)*(n[1]*p[12] ^(1-sigma)+n[2]*p[22]^(1-sigma)-p[12]^(1-sigma))))*w[1]*c[1]*T=p[12]; > > / / n[1] n[2] \ \ > | 1/4 |------ + ------| | > | | 4 4| | > | \p[12] p[22] / | > f[6] := 1.500000000 |1 + ------------------------| w[1] = p[12] > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[12] p[22] p[12] / > >> >f[7]:=(1+(n[1]*p[11]^(1-sigma)+n[2]*p[21]^(1-sigma))/((sigma-1)*(n[1]*p[11] ^(1-sigma)+n[2]*p[21]^(1-sigma)-p[21]^(1-sigma))))*w[2]*c[2]*T=p[21]; > > / / n[1] n[2] \ \ > | 1/4 |------ + ------| | > | | 4 4| | > | \p[11] p[21] / | > f[7] := 1.500000000 |1 + ------------------------| w[2] = p[21] > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[11] p[21] p[21] / > >> >f[8]:=(1+(n[1]*p[12]^(1-sigma)+n[2]*p[22]^(1-sigma))/((sigma-1)*(n[1]*p[12] ^(1-sigma)+n[2]*p[22]^(1-sigma)-p[22]^(1-sigma))))*w[2]*c[2]=p[22]; > > / / n[1] n[2] \ \ > | 1/4 |------ + ------| | > | | 4 4| | > | \p[12] p[22] / | > f[8] := 1.0 |1 + ------------------------| w[2] = p[22] > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[12] p[22] p[22] / > >> f[9]:=M*lambda*w[1]+(L-M)/2*p[A]=Y[1]; > > f[9] := 3/5 lambda w[1] + .2000000000 p[A] = Y[1] > >> f[10]:=M*(1-lambda)*w[2]+(L-M)/2*p[A]=Y[2]; > > f[10] := 3/5 (1 - lambda) w[2] + .2000000000 p[A] = Y[2] > >> f[11]:=(1-mu)*(Y[1]+Y[2])/p[A]=L-M; > > Y[1] + Y[2] > f[11] := 3/5 ----------- = .4000000000 > p[A] > >> >f[12]:=w[1]/(n[1]*p[11]^(1-sigma)+n[2]*p[21]^(1-sigma))^(mu/(1-sigma))=w[2] /(n[1]*p[12]^(1-sigma)+n[2]*p[22]^(1-sigma))^(mu/(1-sigma)); > > f[12] := > > / n[1] n[2] \(1/10) / n[1] n[2] \(1/10) > w[1] |------ + ------| = w[2] |------ + ------| > | 4 4| | 4 4| > \p[11] p[21] / \p[12] p[22] / > >> >sol:=fsolve({f[1],f[2],f[3],f[4],f[5],f[6],f[7],f[8],f[9],f[10],f[11],f[12] },{p[A],p[11],p[12],p[21],p[22],n[1],n[2],w[1],w[2],Y[1],Y[2],lambda},{p[A]= 0..1.5,p[11]=0.5..infinity,p[12]=0.5..infinity,p[21]=0.5..infinity,p[22]=0.5 ..infinity,n[1]=0..2,n[2]=0..2,w[1]=0..infinity,w[2]=0..infinity,Y[1]=0..inf inity,Y[2]=0..infinity,lambda=0..1}); > > sol =FindRoot[{ > > / Y[1] .4000000000 Y[2] \ > n[2] |.6000000000 --------- + ---------------- + 1.0| = > | 5 5 | > \ p[21] %1 p[22] %2 / > > 3/5 - 3/5 lambda, > > 1.0 w[1] 1.50 w[1] > .4 Y[1] - -------- .4 Y[2] - --------- > p[11] p[12] > ------------------ + ------------------- = 1.0 w[1], > 4 4 > p[11] %1 p[12] %2 > > 1.500000000 w[2] 1.0 w[2] > 2/5 Y[1] - ---------------- 2/5 Y[2] - -------- > p[21] p[22] > --------------------------- + ------------------- = 1.0 w[2], > 4 4 > p[21] %1 p[22] %2 > > / Y[1] .6000000000 Y[2] \ > n[1] |.4000000000 --------- + ---------------- + 1.0| = > | 5 5 | > \ p[11] %1 p[12] %2 / > > / 1/4 %1 \ > 3/5 lambda, 1.0 |1 + ------------------------| w[1] = p[11], > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[11] p[21] p[11] / > > / 1/4 %2 \ > 1.500000000 |1 + ------------------------| w[1] = p[12], > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[12] p[22] p[12] / > > / 1/4 %1 \ > 1.500000000 |1 + ------------------------| w[2] = p[21], > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[11] p[21] p[21] / > > / 1/4 %2 \ > 1.0 |1 + ------------------------| w[2] = p[22], > | n[1] n[2] 1 | > | ------ + ------ - ------| > | 4 4 4| > \ p[12] p[22] p[22] / > > 3/5 lambda w[1] + .2000000000 p[A] = Y[1], > > 3/5 (1 - lambda) w[2] + .2000000000 p[A] = Y[2], > > Y[1] + Y[2] (1/10) (1/10) > 3/5 ----------- = .4000000000, w[1] %1 = w[2] %2 } > p[A] > > , {Y[1], 1},{w[1],1} {p[11],1}, {n[1], 0.5},{n[2],0.5}, {p[21],1}, >{Y[2],1}, {p[12],1},{p[22],1}, > > {w[2],1},{lambda,0.5}, {p[A],1}] > > >> > > > ------=_NextPart_000_0026_01C0CC31.CD6BC5F0 filename="Untitled-3.nb" (*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 4.0, MathReader 4.0, or any compatible application. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 37978, 826]*) (*NotebookOutlinePosition[ 38633, 849]*) (* CellTagsIndexPosition[ 38589, 845]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ RowBox[{"{", StyleBox[ RowBox[{ RowBox[{"M", "=", RowBox[{"3", "/", "5"}]}], ",", "\[IndentingNewLine]", " ", RowBox[{"L", "=", "1.0"}], ",", "\[IndentingNewLine]", " ", RowBox[{"c1", "=", "1.0"}], ",", "\[IndentingNewLine]", " ", RowBox[{"c2", "=", "1.0"}], ",", "\[IndentingNewLine]", " ", RowBox[{"mu", "=", RowBox[{"2", "/", "5"}]}], ",", "\[IndentingNewLine]", " ", RowBox[{"sigma", "=", "5"}], ",", "\[IndentingNewLine]", " ", RowBox[{"F1", "=", "1.0"}], ",", "\n", RowBox[{"F2", "=", "1.0"}], ",", "\[IndentingNewLine]", " ", RowBox[{"T", "=", RowBox[{"3", "/", "2"}]}]}], FormatType->StandardForm], StyleBox["}", FormatType->StandardForm]}]], "Input"], Cell[BoxData[ StyleBox[ RowBox[{ RowBox[{ RowBox[{"f1", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"mu", "*", RowBox[{"Y", "[", "1", "]"}]}], "-", RowBox[{ RowBox[{"w", "[", "1", "]"}], "*", RowBox[{ RowBox[{"c", "[", "1", "]"}], "/", RowBox[{"p", "[", "11", "]"}]}]}]}], ")"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"mu", "*", RowBox[{"Y", "[", "2", "]"}]}], "-", RowBox[{ RowBox[{"w", "[", "1", "]"}], "*", RowBox[{"c", "[", "1", "]"}], "*", RowBox[{"T", "/", RowBox[{"p", "[", "12", "]"}]}]}]}], ")"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}]}], "==", RowBox[{ RowBox[{"w", "[", "1", "]"}], "*", RowBox[{"F", "[", "1", "]"}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f2", "=", RowBox[{ RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"mu", "*", RowBox[{"Y", "[", "1", "]"}]}], "-", RowBox[{ RowBox[{"w", "[", "2", "]"}], "*", RowBox[{"c", "[", "2", "]"}], "*", RowBox[{"T", "/", RowBox[{"p", "[", "21", "]"}]}]}]}], ")"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}], "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"mu", "*", RowBox[{"Y", "[", "2", "]"}]}], "-", RowBox[{ RowBox[{"w", "[", "2", "]"}], "*", RowBox[{ RowBox[{"c", "[", "2", "]"}], "/", RowBox[{"p", "[", "22", "]"}]}]}]}], ")"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}]}], "==", RowBox[{ RowBox[{"w", "[", "2", "]"}], "*", RowBox[{"F", "[", "2", "]"}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f3", "=", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"c", "[", "1", "]"}], "*", "mu", "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"Y", "[", "1", "]"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}], "+", RowBox[{"T", "*", RowBox[{"Y", "[", "2", "]"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}]}], ")"}]}], "+", RowBox[{"F", "[", "1", "]"}]}], ")"}]}], "==", RowBox[{"M", "*", "lambda"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f4", "=", RowBox[{ RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"c", "[", "1", "]"}], "*", "mu", "*", RowBox[{"(", RowBox[{ RowBox[{"T", "*", RowBox[{"Y", "[", "1", "]"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}], "+", RowBox[{ RowBox[{"Y", "[", "2", "]"}], "*", RowBox[{ RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"-", "sigma"}], ")"}]}], "/", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}]}]}]}], ")"}]}], "+", RowBox[{"F", "[", "2", "]"}]}], ")"}]}], "==", RowBox[{"M", "*", RowBox[{"(", RowBox[{"1", "-", "lambda"}], ")"}]}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f5", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"sigma", "-", "1"}], ")"}], "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "-", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], ")"}]}], ")"}]}]}], ")"}], "*", RowBox[{"w", "[", "1", "]"}], "*", RowBox[{"c", "[", "1", "]"}]}], "==", RowBox[{"p", "[", "11", "]"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f6", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"sigma", "-", "1"}], ")"}], "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "-", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], ")"}]}], ")"}]}]}], ")"}], "*", RowBox[{"w", "[", "1", "]"}], "*", RowBox[{"c", "[", "1", "]"}], "*", "T"}], "==", RowBox[{"p", "[", "12", "]"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f7", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"sigma", "-", "1"}], ")"}], "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "-", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], ")"}]}], ")"}]}]}], ")"}], "*", RowBox[{"w", "[", "2", "]"}], "*", RowBox[{"c", "[", "2", "]"}], "*", "T"}], "==", RowBox[{"p", "[", "21", "]"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f8", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "+", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}], "/", RowBox[{"(", RowBox[{ RowBox[{"(", RowBox[{"sigma", "-", "1"}], ")"}], "*", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "-", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], ")"}]}], ")"}]}]}], ")"}], "*", RowBox[{"w", "[", "2", "]"}], "*", RowBox[{"c", "[", "2", "]"}]}], "==", RowBox[{"p", "[", "22", "]"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f9", "=", RowBox[{ RowBox[{ RowBox[{"M", "*", "lambda", "*", RowBox[{"w", "[", "1", "]"}]}], "+", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"L", "-", "M"}], ")"}], "/", "2"}], "*", RowBox[{"p", "[", "A", "]"}]}]}], "==", RowBox[{"Y", "[", "1", "]"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f10", "=", RowBox[{ RowBox[{ RowBox[{"M", "*", RowBox[{"(", RowBox[{"1", "-", "lambda"}], ")"}], "*", RowBox[{"w", "[", "2", "]"}]}], "+", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"L", "-", "M"}], ")"}], "/", "2"}], "*", RowBox[{"p", "[", "A", "]"}]}]}], "==", RowBox[{"Y", "[", "2", "]"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f11", "=", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{"1", "-", "mu"}], ")"}], "*", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Y", "[", "1", "]"}], "+", RowBox[{"Y", "[", "2", "]"}]}], ")"}], "/", RowBox[{"p", "[", "A", "]"}]}]}], "==", RowBox[{"L", "-", "M"}]}]}], ";"}], "\n", RowBox[{ RowBox[{"f12", "=", RowBox[{ RowBox[{ RowBox[{"w", "[", "1", "]"}], "/", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "11", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "21", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}], "^", RowBox[{"(", RowBox[{"mu", "/", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}], ")"}]}]}], "==", RowBox[{ RowBox[{"w", "[", "2", "]"}], "/", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"n", "[", "1", "]"}], "*", RowBox[{ RowBox[{"p", "[", "12", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}], "+", RowBox[{ RowBox[{"n", "[", "2", "]"}], "*", RowBox[{ RowBox[{"p", "[", "22", "]"}], "^", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}]}]}], ")"}], "^", RowBox[{"(", RowBox[{"mu", "/", RowBox[{"(", RowBox[{"1", "-", "sigma"}], ")"}]}], ")"}]}]}]}]}], ";"}], "\n"}], FormatType->StandardForm]], "Input"], Cell[BoxData["f11"], "Input"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"TimeConstrained", "[", StyleBox[ RowBox[{ RowBox[{"sol", "=", RowBox[{"FindRoot", "[", RowBox[{ RowBox[{"{", RowBox[{ "f1", ",", "f2", ",", "f3", ",", "f4", ",", "f5", ",", "f6", ",", "f7", ",", "f8", ",", "f9", ",", "f10", ",", "f11", ",", "f12"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"p", "[", "11", "]"}], ",", RowBox[{"{", RowBox[{"0.5", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"p", "[", "12", "]"}], ",", RowBox[{"{", RowBox[{"0.5", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"p", "[", "21", "]"}], ",", RowBox[{"{", RowBox[{"0.5", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"p", "[", "22", "]"}], ",", RowBox[{"{", RowBox[{"0.5", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"n", "[", "1", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"n", "[", "2", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "2"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"w", "[", "1", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"w", "[", "2", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Y", "[", "1", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"Y", "[", "2", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "10"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{"lambda", ",", RowBox[{"{", RowBox[{".001", ",", "1"}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"p", "[", "A", "]"}], ",", RowBox[{"{", RowBox[{".001", ",", "10"}], "}"}]}], "}"}]}], "]"}]}], ",", "\[IndentingNewLine]", "1200."}], FormatType->StandardForm], StyleBox[" ", FormatType->StandardForm], StyleBox["]", FormatType->StandardForm]}], StyleBox[";", FormatType->StandardForm]}]], "Input"], Cell[BoxData[ RowBox[{ RowBox[{"Function", "::", "\<\"flpar\"\>"}], RowBox[{ ":", " "}], "\<\"Parameter specification \\!\\({\\(\\(p[11]\\)\\), \ \\(\\(p[12]\\)\\), \\(\\(p[21]\\)\\), \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \ \\(\\(n[2]\\)\\), \\(\\(w[1]\\)\\), \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \ \\(\\(Y[2]\\)\\), lambda, \\(\\(p[A]\\)\\)}\\) in \ \\!\\(Function[\\(\\(\\(\\({\\(\\(p[11]\\)\\), \\(\\(p[12]\\)\\), \\(\\(p[21]\ \\)\\), \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \\(\\(n[2]\\)\\), \ \\(\\(w[1]\\)\\), \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \\(\\(Y[2]\\)\\), \ lambda, \\(\\(p[A]\\)\\)}\\)\\), \\(\\(\\(\\(\\((\\(\\(\[LeftSkeleton] 1 \ \[RightSkeleton]\\)\\) + \\(\\(\[LeftSkeleton] 1 \ \[RightSkeleton]\\)\\))\\)\\^\\(1/10\\)\\\\ \\(\\(w[1]\\)\\)\\)\\) - \ \\(\\(\\(\\(\[LeftSkeleton] 1 \[RightSkeleton]\\)\\)\\\\ \ \\(\\(w[2]\\)\\)\\)\\)\\)\\)\\)\\)]\\) should be a symbol or a list of \ symbols.\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"FindRoot", "::", "\<\"frnum\"\>"}], RowBox[{ ":", " "}], "\<\"Function \\!\\({\\(\\(-0.0006976305976081568`\\)\\), \ \\(\\(-\\(\\(\[LeftSkeleton] 22 \[RightSkeleton]\\)\\)\\)\\), \\(\\(\ \[LeftSkeleton] 9 \[RightSkeleton]\\)\\), \\(\\({0.13953314042219878`, \ 0.1395331399575469`, \\(\\(\[LeftSkeleton] 9 \[RightSkeleton]\\)\\), \ 0.001559970805520036`}\\)\\)}\\) is not a length \\!\\(12\\) list of numbers \ at \\!\\({\\(\\(p[11]\\)\\), \\(\\(p[12]\\)\\), \\(\\(p[21]\\)\\), \ \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \\(\\(n[2]\\)\\), \\(\\(w[1]\\)\\), \ \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \\(\\(Y[2]\\)\\), lambda, \ \\(\\(p[A]\\)\\)}\\) = \\!\\({0.13953314042219878`, 0.1395331399575469`, \ \\(\\(\[LeftSkeleton] 8 \[RightSkeleton]\\)\\), 0.19354417044687444`, \ 0.001559970805520036`}\\).\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"Function", "::", "\<\"flpar\"\>"}], RowBox[{ ":", " "}], "\<\"Parameter specification \\!\\({\\(\\(p[11]\\)\\), \ \\(\\(p[12]\\)\\), \\(\\(p[21]\\)\\), \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \ \\(\\(n[2]\\)\\), \\(\\(w[1]\\)\\), \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \ \\(\\(Y[2]\\)\\), lambda, \\(\\(p[A]\\)\\)}\\) in \ \\!\\(Function[\\(\\(\\(\\({\\(\\(p[11]\\)\\), \\(\\(p[12]\\)\\), \\(\\(p[21]\ \\)\\), \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \\(\\(n[2]\\)\\), \ \\(\\(w[1]\\)\\), \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \\(\\(Y[2]\\)\\), \ lambda, \\(\\(p[A]\\)\\)}\\)\\), \\(\\(\\(\\(\\((\\(\\(\[LeftSkeleton] 1 \ \[RightSkeleton]\\)\\) + \\(\\(\[LeftSkeleton] 1 \ \[RightSkeleton]\\)\\))\\)\\^\\(1/10\\)\\\\ \\(\\(w[1]\\)\\)\\)\\) - \ \\(\\(\\(\\(\[LeftSkeleton] 1 \[RightSkeleton]\\)\\)\\\\ \ \\(\\(w[2]\\)\\)\\)\\)\\)\\)\\)\\)]\\) should be a symbol or a list of \ symbols.\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"FindRoot", "::", "\<\"frnum\"\>"}], RowBox[{ ":", " "}], "\<\"Function \\!\\({\\(\\(-0.0006888049142819514`\\)\\), \ \\(\\(-\\(\\(\[LeftSkeleton] 22 \[RightSkeleton]\\)\\)\\)\\), \\(\\(\ \[LeftSkeleton] 9 \[RightSkeleton]\\)\\), \\(\\({0.3197665702110994`, \ 0.31976656997877345`, \\(\\(\[LeftSkeleton] 9 \[RightSkeleton]\\)\\), \ 0.001279985402760018`}\\)\\)}\\) is not a length \\!\\(12\\) list of numbers \ at \\!\\({\\(\\(p[11]\\)\\), \\(\\(p[12]\\)\\), \\(\\(p[21]\\)\\), \ \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \\(\\(n[2]\\)\\), \\(\\(w[1]\\)\\), \ \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \\(\\(Y[2]\\)\\), lambda, \ \\(\\(p[A]\\)\\)}\\) = \\!\\({0.3197665702110994`, 0.31976656997877345`, \ \\(\\(\[LeftSkeleton] 8 \[RightSkeleton]\\)\\), 0.09727208522343722`, \ 0.001279985402760018`}\\).\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"Function", "::", "\<\"flpar\"\>"}], RowBox[{ ":", " "}], "\<\"Parameter specification \\!\\({\\(\\(p[11]\\)\\), \ \\(\\(p[12]\\)\\), \\(\\(p[21]\\)\\), \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \ \\(\\(n[2]\\)\\), \\(\\(w[1]\\)\\), \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \ \\(\\(Y[2]\\)\\), lambda, \\(\\(p[A]\\)\\)}\\) in \ \\!\\(Function[\\(\\(\\(\\({\\(\\(p[11]\\)\\), \\(\\(p[12]\\)\\), \\(\\(p[21]\ \\)\\), \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \\(\\(n[2]\\)\\), \ \\(\\(w[1]\\)\\), \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \\(\\(Y[2]\\)\\), \ lambda, \\(\\(p[A]\\)\\)}\\)\\), \\(\\(\\(\\(\\((\\(\\(\[LeftSkeleton] 1 \ \[RightSkeleton]\\)\\) + \\(\\(\[LeftSkeleton] 1 \ \[RightSkeleton]\\)\\))\\)\\^\\(1/10\\)\\\\ \\(\\(w[1]\\)\\)\\)\\) - \ \\(\\(\\(\\(\[LeftSkeleton] 1 \[RightSkeleton]\\)\\)\\\\ \ \\(\\(w[2]\\)\\)\\)\\)\\)\\)\\)\\)]\\) should be a symbol or a list of \ symbols.\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"General", "::", "\<\"stop\"\>"}], RowBox[{ ":", " "}], "\<\"Further output of \\!\\(Function :: \\\"flpar\\\"\\) \ will be suppressed during this calculation.\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"FindRoot", "::", "\<\"frnum\"\>"}], RowBox[{ ":", " "}], "\<\"Function \\!\\({\\(\\(-0.00021384792096500356`\\)\\), \ \\(\\(\[LeftSkeleton] 10 \[RightSkeleton]\\)\\), \\(\\({0.4098832851055497`, \ 0.40988328498938675`, \\(\\(\[LeftSkeleton] 9 \[RightSkeleton]\\)\\), \ 0.001139992701380009`}\\)\\)}\\) is not a length \\!\\(12\\) list of numbers \ at \\!\\({\\(\\(p[11]\\)\\), \\(\\(p[12]\\)\\), \\(\\(p[21]\\)\\), \ \\(\\(p[22]\\)\\), \\(\\(n[1]\\)\\), \\(\\(n[2]\\)\\), \\(\\(w[1]\\)\\), \ \\(\\(w[2]\\)\\), \\(\\(Y[1]\\)\\), \\(\\(Y[2]\\)\\), lambda, \ \\(\\(p[A]\\)\\)}\\) = \\!\\({0.4098832851055497`, 0.40988328498938675`, \ \\(\\(\[LeftSkeleton] 8 \[RightSkeleton]\\)\\), 0.04913604261171861`, \ 0.001139992701380009`}\\).\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"General", "::", "\<\"stop\"\>"}], RowBox[{ ":", " "}], "\<\"Further output of \\!\\(FindRoot :: \\\"frnum\\\"\\) \ will be suppressed during this calculation.\"\>"}]], "Message"], Cell[BoxData[ RowBox[{ RowBox[{"FindRoot", "::", "\<\"frsec\"\>"}], RowBox[{ ":", " "}], "\<\"Secant method failed to converge to the prescribed \ accuracy after \\!\\(15\\) iterations.\"\>"}]], "Message"] }, Open ]] }, FrontEndVersion->"4.0 for Microsoft Windows", ScreenRectangle->{{0, 1024}, {0, 695}}, WindowSize->{826, 599}, WindowMargins->{{36, Automatic}, {23, Automatic}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1717, 49, 852, 18, 190, "Input"], Cell[2572, 69, 25761, 547, 730, "Input"], Cell[28336, 618, 29, 0, 30, "Input"], Cell[CellGroupData[{ Cell[28390, 622, 3474, 79, 130, "Input"], Cell[31867, 703, 947, 16, 80, "Message"], Cell[32817, 721, 866, 14, 78, "Message"], Cell[33686, 737, 947, 16, 80, "Message"], Cell[34636, 755, 866, 14, 78, "Message"], Cell[35505, 771, 947, 16, 80, "Message"], Cell[36455, 789, 233, 5, 24, "Message"], Cell[36691, 796, 804, 13, 78, "Message"], Cell[37498, 811, 233, 5, 24, "Message"], Cell[37734, 818, 228, 5, 24, "Message"] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************) ------=_NextPart_000_0026_01C0CC31.CD6BC5F0--