Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2001
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2001

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Parametric Plot

  • To: mathgroup at smc.vnet.net
  • Subject: [mg27102] Re: Parametric Plot
  • From: Brian Higgins <bghiggins at ucdavis.edu>
  • Date: Sun, 4 Feb 2001 02:58:28 -0500 (EST)
  • References: <95gma2$8ir@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Winston, The problem is the extra braces that got carried along in the
calculation.
In[35]:={xd[t], xr[t]}

Out[35]={{InterpolatingFunction[{{0., 5000.}}, "<>"][
      t]}, {InterpolatingFunction[{{0., 5000.}}, "<>"][t]}}

Plot does not worry about the extra braces but ParametricPlot cannot
interpret the expression for plotting with the extra braces. The
solution is to wrap the expresion with Flatten (and also with Evaluate
if you want to avoid uncompiled message)

ParametricPlot[Evaluate[Flatten[{xd[t], xr[t]}]], {t, 0, 100}]

Cheers

Brian



In article <95gma2$8ir at smc.vnet.net>,
  Winston Garira <uceswga at ucl.ac.uk> wrote:
> I am trying to solve a system of two coupled pendulums using the
NDSolve.
> command. If I replace the Plot[{xd[t],xr[t]},{t,0,100}] with
> ParametricPlot[{xd[t],xr[t]},{t,0,100}] it does not work. Can someone
tell
> me why the ParametricPlot command does not work in this case. I need
to
> make parametric plots for this system.
>
> Thanking you in annticipation
>
> Winston
>
>  Pends[init1_, init2_, time_, k_, {c_, w_, p_}]:=
>  Module[{},
> 	pend=NDSolve[{x1''[t]+ c x1'[t]+ p Sin[x1[t]]==k(x2[t]-x1[t]),
> 		      x2''[t]+ c x2'[t]+ p Sin[x2[t]]==k(x1[t]-x2[t]),
> 		x1[0]==init1[[1]], x1'[0]==init1[[2]],
> 		x2[0]==init2[[1]], x2'[0]==init2[[2]]},
> 		{x1, x2},
> 		{t,0,time}, MaxSteps->200000];
> 	xd[t_] := Evaluate[x1[t] /. pend];
> 	xdd[t_]:= Evaluate[x1'[t] /. pend];
> 	xr[t_] := Evaluate[x2[t] /. pend];
> 	xrd[t_]:= Evaluate[x2'[t] /. pend];
> 	];
>
> c=0.1; w=0.5; p=1.9;
>
> Pends[{1.57,0}, {-1.57,0}, 5000,0.6,  {c,w,p}];
> Plot[{xd[t],xr[t]},{t,0,100},
> PlotStyle\[Rule]{RGBColor[1,0,0.3],RGBColor[0,0.5,1]}];
>
> W.GARIRA
> E-mail: w.garira at ucl.ac.uk
> phone : +44-(0)20-7679-2521
> __________________________________________________


Sent via Deja.com
http://www.deja.com/


  • Prev by Date: Re: mathematica crashes after 10 seconds of computation
  • Next by Date: Re: Parametric Plot
  • Previous by thread: RE: Parametric Plot
  • Next by thread: Re: Parametric Plot