Re: Parametric Plot
- To: mathgroup at smc.vnet.net
- Subject: [mg27102] Re: Parametric Plot
- From: Brian Higgins <bghiggins at ucdavis.edu>
- Date: Sun, 4 Feb 2001 02:58:28 -0500 (EST)
- References: <95gma2$8ir@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Winston, The problem is the extra braces that got carried along in the calculation. In[35]:={xd[t], xr[t]} Out[35]={{InterpolatingFunction[{{0., 5000.}}, "<>"][ t]}, {InterpolatingFunction[{{0., 5000.}}, "<>"][t]}} Plot does not worry about the extra braces but ParametricPlot cannot interpret the expression for plotting with the extra braces. The solution is to wrap the expresion with Flatten (and also with Evaluate if you want to avoid uncompiled message) ParametricPlot[Evaluate[Flatten[{xd[t], xr[t]}]], {t, 0, 100}] Cheers Brian In article <95gma2$8ir at smc.vnet.net>, Winston Garira <uceswga at ucl.ac.uk> wrote: > I am trying to solve a system of two coupled pendulums using the NDSolve. > command. If I replace the Plot[{xd[t],xr[t]},{t,0,100}] with > ParametricPlot[{xd[t],xr[t]},{t,0,100}] it does not work. Can someone tell > me why the ParametricPlot command does not work in this case. I need to > make parametric plots for this system. > > Thanking you in annticipation > > Winston > > Pends[init1_, init2_, time_, k_, {c_, w_, p_}]:= > Module[{}, > pend=NDSolve[{x1''[t]+ c x1'[t]+ p Sin[x1[t]]==k(x2[t]-x1[t]), > x2''[t]+ c x2'[t]+ p Sin[x2[t]]==k(x1[t]-x2[t]), > x1[0]==init1[[1]], x1'[0]==init1[[2]], > x2[0]==init2[[1]], x2'[0]==init2[[2]]}, > {x1, x2}, > {t,0,time}, MaxSteps->200000]; > xd[t_] := Evaluate[x1[t] /. pend]; > xdd[t_]:= Evaluate[x1'[t] /. pend]; > xr[t_] := Evaluate[x2[t] /. pend]; > xrd[t_]:= Evaluate[x2'[t] /. pend]; > ]; > > c=0.1; w=0.5; p=1.9; > > Pends[{1.57,0}, {-1.57,0}, 5000,0.6, {c,w,p}]; > Plot[{xd[t],xr[t]},{t,0,100}, > PlotStyle\[Rule]{RGBColor[1,0,0.3],RGBColor[0,0.5,1]}]; > > W.GARIRA > E-mail: w.garira at ucl.ac.uk > phone : +44-(0)20-7679-2521 > __________________________________________________ Sent via Deja.com http://www.deja.com/