MathGroup Archive 2001

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re Complicated Rotation

  • To: mathgroup at
  • Subject: [mg27278] Re Complicated Rotation
  • From: bghiggins at (Brian Higgins)
  • Date: Fri, 16 Feb 2001 03:58:29 -0500 (EST)
  • Organization: The Math Forum
  • References: <96as1b$>
  • Sender: owner-wri-mathgroup at

There are sevral problems I see with your formulation. First, the
functions you defined must be of the following form:

f1[t_] := c Sin[t]
f2[t_] := d Cos[t]
f3[t_] := Sqrt[f1[t]^2 + f2[t]^2]
x[t_] := ArcCos[f1[t]/f2[t]]
y[t_] := g Sec[x[t]]

Note that when you specify f1,f2 as arguments to another function you
must use f1[t], f2[t] etc. Then when you evaluate y[t] you get


Then I would craete an array that is a function of t

In[7]:=r[t_] = Array[a[t], {3, 3}]
Out[7]={{a[t][1, 1], a[t][1, 2], a[t][1, 3]}, 
  {a[t][2, 1], a[t][2, 2], a[t][2, 3]}, 
  {a[t][3, 1], a[t][3, 2], a[t][3, 3]}}

Next we define the recursive functions

In[11]:=s0 = {1, 0, 0};
        sf[1] = r[1].s0
        sf[n_] := r[n].sf[n - 1]

Out[12]={a[1][1, 1], a[1][2, 1], a[1][3, 1]}

Thus evaluating sf[1] we get 


Out[14]={a[1][1, 1], a[1][2, 1], a[1][3, 1]}

and simlarly for any other time step. Finally we need to substitute in
for the values of a[t][i,j]. I suggest a set of replacement rules Thus
for your function a[t][1,1] we have

In[15]:=sf[1] /. a[t_][1, 1] -> Sin[b]^2*Cos[y[t]] + Cos[x[t]]^2
Out[15]=Cos[(d*g*Cot[1])/c]*Sin[b]^2 + (c^2*Tan[1]^2)/d^2, 
  a[1][2, 1], a[1][3, 1]}

If you create an array of replacement rules (call them myrules) for
the a[t][i,j] terms, then you can be applied the rules in the
definition of sf[n]. Finally to plot the values we can use ListPlot


I hope I have understood your problem correctly, if not it was a happy


  • Prev by Date: RE: Solving for Sum element
  • Next by Date: Re: Mathematica 4.1 How to.....
  • Previous by thread: Re: ParallelMap inefficient?
  • Next by thread: Combination Algorithm without brut force - Combine 4's into least 6's