Re: Chebyshev values
- To: mathgroup at smc.vnet.net
- Subject: [mg27360] Re: [mg27333] Chebyshev values
- From: Roberto Brambilla <rlbrambilla at cesi.it>
- Date: Thu, 22 Feb 2001 02:25:06 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
At 03.17 21/02/01 -0500, you wrote: > >Hello, >I wonder if someone could tell me how can I find a formulae for the >values of the derivatives of the Chebyshev polinomials in x=1. >The table of this constants is easy obtained once you have selected the >value of n with: >Table[D[ChebyshevT[k,x],{x,m}]/.x->1,{k,1,n},{m,1,k}]//TableForm >and the formulae if exist must depend on m and k. >H. Ramos > > Hi, ans=D[ChebyshevT[k,x],{x,m}]/.x->1 ans=2^(m-1)(m-1)! k Binomial[m+k-1,k-m] This result is obtained from Gradshteyn-Ryzhik formula 8.949 : D[ChebyshevT[k,x],{x,m}]= 2^(m-1)Gamma[m] k GegenbauerC[k-m,m,x] and formula 8.937(4) GegenbauerC[n,q,1]=Binomial[2q+n-1,n] Bye, Roberto Roberto Brambilla CESI Via Rubattino 54 20134 Milano tel +39.2.2125.5875 fax +39.2.2125.610 rlbrambilla at cesi.it