Dirichlet generating function
- To: mathgroup at smc.vnet.net
- Subject: [mg26551] Dirichlet generating function
- From: "Arnold Knopfmacher" <arnoldk at cam.wits.ac.za>
- Date: Fri, 5 Jan 2001 00:34:02 -0500 (EST)
- Organization: MS, University of the Witwatersrand
- Sender: owner-wri-mathgroup at wolfram.com
I wish to expand the product Product[1/(1-n^(-s)),{n,2,12}] to obtain output in the form of a Dirichlet series, 1+2^(-s)+3^(-s)+2*4^(-s)+5^(-s)+2*6^(-s)+...4*12^(-s)+... (The coefficients of m^(-s) in the above series give the number of factorizations of m into factors greater than 1. E.g. 12 can be factored in 4 ways, as 12 or 6*2 or 4*3 or 3*2*2). Thanks Arnold Knopfmacher Dept of Computational and Applied Maths Witwatersrand University Johannesburg 2050 South Africa http://www.wits.ac.za/science/number_theory/arnold.htm Fax: 2711-4039317 Phone: 2711- 717-6121 email: arnoldk at gauss.cam.wits.ac.za