Re: Multiple choice question
- To: mathgroup at smc.vnet.net
- Subject: [mg26743] Re: Multiple choice question
- From: "A. Ciarkowski" <aciark at ippt.gov.pl>
- Date: Fri, 19 Jan 2001 02:14:18 -0500 (EST)
- Organization: http://news.icm.edu.pl/
- References: <943dj3$cjh@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Since the integral in question can alternatively
be calculated as:
In[1]:=
Limit[-Exp[-z] ExpIntegralEi[z] /. z->(e-I 2)(1+I), e->0] // N
Out[1]:= -0.547745-0.532287 I ,
Out[13] (lucky 13!) seems to be valid.
Adam
F.H.Simons at tue.nl wrote:
>
> We compute an integral in four different ways (one numerically and three
> symbolically). Which of the following results is correct?
>
> In[12]:=
> NIntegrate[ Exp[I t 2 ]/(t-1-I), {t, 0, Infinity}, Method->Oscillatory]
>
> Out[12]=
> -0.934349-0.70922 I
>
> In[13]:=
> Integrate[ Exp[I t 2 ]/(t-1-I), {t, 0, Infinity}] // N
>
> Out[13]=
> -0.547745-0.532287 I
>
> In[14]:=
> N[Integrate[ Exp[I t u ]/(t-1-I), {t, 0, Infinity}] /. u-> 2]
>
> Out[14]=
> -0.16114-0.355355 I
>
> In[15]:=
> N[ Integrate[#, {t, 0, Infinity}]& /@ ComplexExpand[ Exp[I t 2 ]/(t-1-I),
> TargetFunctions->{Re, Im}] // Expand ]
>
> Out[15]=
> -0.724677-0.145683 I
>
> (And why are the other results false?)
>
> Fred Simons
> Eindhoven University of Technology