Re: Who can help me?
- To: mathgroup at smc.vnet.net
- Subject: [mg26880] Re: [mg26778] Who can help me?
- From: Roberto Brambilla <rlbrambilla at cesi.it>
- Date: Fri, 26 Jan 2001 01:27:25 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Subject: [mg26880] Re: [mg26778] Who can help me? At 03.10 22/01/01 -0500, Jacqueline wrote: >>I'm working on this polynomial linked to the truncated icosahedron: >> >> -17808196677858180 x + >> 138982864440593250 x^2 - 527304830550920588 x^3 + >> 1301702220253454898 x^4 - 2358155595920193382 x^5 + >> 3347791850698681436 x^6 - 3878279506351645237 x^7 + >> 3764566420106299695 x^8 - 3117324712750504866 x^9 + >> 2229873533973727384 x^10 - 1390372935143028255 x^11 + >> 760794705528035032 x^12 - 367240961907017721 x^13 + >> 157018216115380477 x^14 - 59650776196609992 x^15 + >> 20179153653354540 x^16 - 6086251542996201 x^17 + >> 1637007669992780 x^18 - 392300104078670 x^19 + >> 83589038962550 x^20 - 15782712151030 x^21 + >> 2628070696678 x^22 - 383466859804 x^23 + 48618908986 x^24 - >> 5298021900 x^25 + 489095520 x^26 - 37516324 x^27 + >> 2327268 x^28 - 112200 x^29 + 3945 x^30 - 90 x^31 + x^32; >> >>I'm interested at its value for x-> 2 + 2 Cos [2 [Pi] / 7]. >>Taking N [] gives 3.2628184 10^7 >> >>But if I simplify first and then take N[] it gives -0.0390625 + >>0.0195313 [ImaginaryI] >> >>As it is a polynomial with integer coefficients, and 2 + 2 Cos [2 pi / >>7] is real too, the result should be real. So I prefer the 1st >>solution, but for another reason, I'm not so sure of this result. >> >>A Plot between 3 and 3.5, does not help me neither to check if the >>value 3.2628184 is good and If I do : polynomial /. x -> 3.2628184 >>10^7, it gives 2.7225238332205106`^240 >> >>How could I check the result 3.2628184 10^7 ? >> >>Thanks >> >>Jacqueline >> >> > I put p[x_]:= <Jacqueline polinomial> then I approximate only p[x0] with different precision: Table[N[p[N[2 + 2 Cos [2 Pi / 7]] ],10*s],{s,1,8}] {3.2628184*10^7,3.2628184*10^7,3.2628184*10^7, 3.2628184*10^7,3.2628184*10^7,3.2628184*10^7, 3.2628184*10^7,3.2628184*10^7} nothing happens! Now I approximate only x0 with different precision: Table[N[p[N[2 + 2 Cos [2 Pi / 7],10*s] ]],{s,1,8}] {3.2628184*10^7, 0., 0.00108056072351914167, 0.00108056072343889031, 0.00108056072343889031, 0.00108056072343889031, 0.00108056072343889031, .00108056072343889031} Approximating both p[x] and x0 : Table[N[p[N[2 + 2 Cos [2 Pi/7],10*s]],10*s],{s,1,8}] {3.26281840000000045*^7, 0.3167-7.0688, 0.00108056072352, 0.00108056072343889043623, 0.001080560723438890436215553236448920, 0.00108056072343889043621555323644333824364337, 0.00108056072343889043621555323644333824364333803921298, 0.0010805607234388904362155532364433382436433380392129926065104314} I suppose this the right value. Bye Rob. Roberto Brambilla CESI Via Rubattino 54 20134 Milano tel +39.2.2125.5875 fax +39.2.2125.610 rlbrambilla at cesi.it