Re: Who can help me?
- To: mathgroup at smc.vnet.net
- Subject: [mg26874] Re: [mg26778] Who can help me?
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Fri, 26 Jan 2001 01:27:21 -0500 (EST)
- References: <94ohkl$eeu@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Andrzej, We can avoid PolynomialReduce, but it is good general technique; and we do ultimately rely on Mathematica's N function, so I would use high precision arithmetic to get a result guaranteed -- modulo the correctness of Mathematica. In[1]:= poly = -17808196677858180 x + 138982864440593250 x^2 - 527304830550920588 x^3 + 1301702220253454898 x^4 - 2358155595920193382 x^5 + 3347791850698681436 x^6 - 3878279506351645237 x^7 + 3764566420106299695 x^8 - 3117324712750504866 x^9 + 2229873533973727384 x^10 - 1390372935143028255 x^11 + 760794705528035032 x^12 - 367240961907017721 x^13 + 157018216115380477 x^14 - 59650776196609992 x^15 + 20179153653354540 x^16 - 6086251542996201 x^17 + 1637007669992780 x^18 - 392300104078670 x^19 + 83589038962550 x^20 - 15782712151030 x^21 + 2628070696678 x^22 - 383466859804 x^23 + 48618908986 x^24 - 5298021900 x^25 + 489095520 x^26 - 37516324 x^27 + 2327268 x^28 - 112200 x^29 + 3945 x^30 - 90 x^31 + x^32; In[2]:= rp = RootReduce[poly /. x -> RootReduce[FunctionExpand[2 + 2*Cos[(2*Pi)/7]]]] Out[2]= Root[37704366780464883611909 - 34893334509208677195505431* #1 + 724196462952652*#1^2 + #1^3 & , 2] In[3]:= N[rp, 20] Out[3]= 0.0010805607234388904362 -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Andrzej Kozlowski" <andrzej at tuins.ac.jp> wrote in message news:94ohkl$eeu at smc.vnet.net... > Here is one other possible approach to this problem besides the ones > suggested so far. I think it is more expensive in terms of time, but because > it makes no use of high precision arithmetic I thought it worth mentioning. > Bacically, the idea is to use Mathematica's powerful algebra functions to > simplify the expression as much as posible before applying N: > > poly = -17808196677858180 x + 138982864440593250 x^2 - > 527304830550920588 x^3 + 1301702220253454898 x^4 - > 2358155595920193382 x^5 + 3347791850698681436 x^6 - > 3878279506351645237 x^7 + 3764566420106299695 x^8 - > 3117324712750504866 x^9 + 2229873533973727384 x^10 - > 1390372935143028255 x^11 + 760794705528035032 x^12 - > 367240961907017721 x^13 + 157018216115380477 x^14 - > 59650776196609992 x^15 + 20179153653354540 x^16 - > 6086251542996201 x^17 + 1637007669992780 x^18 - 392300104078670 x^19 + > 83589038962550 x^20 - 15782712151030 x^21 + 2628070696678 x^22 - > 383466859804 x^23 + 48618908986 x^24 - 5298021900 x^25 + > 489095520 x^26 - 37516324 x^27 + 2327268 x^28 - 112200 x^29 + > 3945 x^30 - 90 x^31 + x^32; > > In[2]:= > p = First[RootReduce[FunctionExpand[2 + 2*Cos[(2*Pi)/7]]]][x] > > Out[2]= > 2 3 > -1 + 6 x - 5 x + x > > In[3]:= > q = PolynomialReduce[poly, p][[2]] > > Out[3]= > 2 > -883889576185949 + 840711507944414 x - 175083482624375 x > > In[4]:= > N[q /. x -> 2 + 2 Cos[2Pi/7] // FunctionExpand // RootReduce] > > Out[4]= > 0.00108056 > > -- > Andrzej Kozlowski > Toyama International University > JAPAN > > http://platon.c.u-tokyo.ac.jp/andrzej/ > http://sigma.tuins.ac.jp/ > > on 1/22/01 5:10 PM, Jacqueline Zizi at jazi at club-internet.fr wrote: > > > I'm working on this polynomial linked to the truncated icosahedron: > > > > -17808196677858180 x + > > 138982864440593250 x^2 - 527304830550920588 x^3 + > > 1301702220253454898 x^4 - 2358155595920193382 x^5 + > > 3347791850698681436 x^6 - 3878279506351645237 x^7 + > > 3764566420106299695 x^8 - 3117324712750504866 x^9 + > > 2229873533973727384 x^10 - 1390372935143028255 x^11 + > > 760794705528035032 x^12 - 367240961907017721 x^13 + > > 157018216115380477 x^14 - 59650776196609992 x^15 + > > 20179153653354540 x^16 - 6086251542996201 x^17 + > > 1637007669992780 x^18 - 392300104078670 x^19 + > > 83589038962550 x^20 - 15782712151030 x^21 + > > 2628070696678 x^22 - 383466859804 x^23 + 48618908986 x^24 - > > 5298021900 x^25 + 489095520 x^26 - 37516324 x^27 + > > 2327268 x^28 - 112200 x^29 + 3945 x^30 - 90 x^31 + x^32; > > > > I'm interested at its value for x-> 2 + 2 Cos [2 [Pi] / 7]. > > Taking N [] gives 3.2628184 10^7 > > > > But if I simplify first and then take N[] it gives -0.0390625 + > > 0.0195313 [ImaginaryI] > > > > As it is a polynomial with integer coefficients, and 2 + 2 Cos [2 pi / > > 7] is real too, the result should be real. So I prefer the 1st > > solution, but for another reason, I'm not so sure of this result. > > > > A Plot between 3 and 3.5, does not help me neither to check if the > > value 3.2628184 is good and If I do : polynomial /. x -> 3.2628184 > > 10^7, it gives 2.7225238332205106`^240 > > > > How could I check the result 3.2628184 10^7 ? > > > > Thanks > > > > Jacqueline > > > > > > > > > >