Re: Q: Factor with Polynominals?

• To: mathgroup at smc.vnet.net
• Subject: [mg26985] Re: Q: Factor with Polynominals?
• From: Robert <robert.schuerhuber at gmx.at>
• Date: Tue, 30 Jan 2001 23:22:10 -0500 (EST)
• Organization: Vienna University of Technology
• References: <943d4e\$chm@smc.vnet.net> <9461cq\$gaa@smc.vnet.net> <948rc8\$kku@smc.vnet.net> <94gqbh\$qsj@smc.vnet.net> <dOJb6.6098\$nn4.155772@ralph.vnet.net>
• Sender: owner-wri-mathgroup at wolfram.com

```
unfortunately your method works with the (rather simple) examples, but it fails
with longer, more complex poynomials.
robert

Allan Hayes wrote:

> Here is a technique that works, with little thought, for both of the
> examples given so far in this thread.
>
> poly = (x^2 + y^2)^4 + y (x^2 + y^2) + y;
> poly2 = 3 x^2 + 3 y^2 + x + y^3 + y x^2;
>
> tf[u___ + a_ b_ + v___ + a_ c_ + w___] := u + a(b + c) + v + w;
> tf[z_] := z;
>
> fs = FullSimplify[poly, TransformationFunctions -> {Automatic, tf},
> ComplexityFunction -> (Length[#] &)
> ]

```

• Prev by Date: Re: (no subject)
• Next by Date: Re: redundant brackets
• Previous by thread: Re: Q: Factor with Polynominals?
• Next by thread: 20 variations on Pascal's Triangle