Re: a visualization problem in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg38366] Re: a visualization problem in Mathematica
- From: "Borut L" <gollum at email.si>
- Date: Fri, 13 Dec 2002 04:09:07 -0500 (EST)
- References: <at4e6d$f34$1@smc.vnet.net> <at9c5g$ptp$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
I like this intuitive solution Thank you "Selwyn Hollis" <hollisse at mail.armstrong.edu> wrote in message news:at9c5g$ptp$1 at smc.vnet.net... | Borut, | | If you're willing to use a less "primitive" approach... | | First let's assume the radius is 1 and define | | p[t_] := (1 - t)*p1 + t*p2 | | and | | curve[p1_,p2_] := ParametricPlot3D[Evaluate[Flatten[{p[t]/Sqrt[p[t].p[t]], | Thickness[0.01]}]], {t, 0, 1}, DisplayFunction->Identity] | | This generates random points for testing: | | randompoint := Module[{u=2*Pi*Random[], v=Pi*Random[]}, | {Cos[u]Sin[v], Sin[u]Sin[v], Cos[v]}] | | Now, | | <<Graphics`Shapes`; | wiresphere=WireFrame[{GrayLevel[.7],Sphere[]}]; | | p1 = randompoint | p2 = randompoint | Show[wiresphere, curve[p1,p2]] | | | Cheers, | Selwyn Hollis