Partitions
- To: mathgroup at smc.vnet.net
- Subject: [mg32839] Partitions
- From: "Juan" <erfa11 at hotmail.com>
- Date: Fri, 15 Feb 2002 02:49:36 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Hello, Looking in the package DiscreteMath`Combinatorica`,I can not find a function to get the partitions of n, in s parts. A way to get the partitions of n, in s parts with diferents numbers is like that: << DiscreteMath`Combinatorica` In[1]:= F1[n_, s_] := Select[Partitions[n], Length[#] == Length@Union[#] == s &] In[2]:= F1[60, 8]; // Timing Out[2]:= {170.315 Second, Null} (If you try F1[100,10] ... is useless) I need to do that for n=100, 200, 300,..., becouse I am writing a package to play lottery. Using the brute force philosophy, I have wrote the function F2, which is hundred of times faster: In[3]:= F2[n_, s_, m_:1] := Module[{a = Array[p, s - 1], y, v, q, t, b = Abs[s - 2]}, p[0] = m - 1; y = FoldList[Plus, 0, Range[n - 1]]; v = {a, n - Plus @@ a} // Flatten; q = n - FoldList[Plus, 0, a]; t = Table[{p[i + 1], p[i] + 1, (q[[i + 1]] - y[[s - i]])/(s - i)}, {i, 0, s - 2}]; Flatten[Table[v, Evaluate[Sequence @@ t]], b]] In[4]:= F2[60, 8]; // Timing Out[4]:= {0.06 Second, Null} In[5]:= F1[20, 5] Out[5]:= {{10, 4, 3, 2, 1}, {9, 5, 3, 2, 1}, {8, 6, 3, 2, 1}, {8, 5, 4, 2, 1}, {7, 6, 4, 2, 1}, {7, 5, 4, 3, 1}, {6, 5, 4, 3, 2}} In[6]:= F2[20, 5] Out[6]:= {{1, 2, 3, 4, 10}, {1, 2, 3, 5, 9}, {1, 2, 3, 6, 8}, {1, 2, 4, 5, 8}, {1, 2, 4, 6, 7}, {1, 3, 4, 5, 7}, {2, 3, 4, 5, 6}} In[7]:= Length@F1[30, 5] == Length@F2[30, 5] Out[7]:= True In[8]:= F2[100, 10]; // Timing Out[8]:= {3.014 Second, Null} (F2 also works for m<=0) Surely F2 can be improbe or samebody knows something better.Please send it here. If you want all the partitions of n in diferents numbers you have to find F2[n, i] for i={1,2,3,...,(Sqrt[1+8n]-1)/2} Regards Juan _________________________________________________________________ MSN Photos es la manera más sencilla de compartir e imprimir sus fotos: http://photos.latam.msn.com/Support/WorldWide.aspx