Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2002
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

RE: cross product

  • To: mathgroup at smc.vnet.net
  • Subject: [mg35370] RE: [mg35367] cross product
  • From: "Florian Jaccard" <jaccardf at eicn.ch>
  • Date: Wed, 10 Jul 2002 02:19:32 -0400 (EDT)
  • Sender: owner-wri-mathgroup at wolfram.com

Hello !


The easiest way is to create your own croosProdHom function for vectors in
homogeneous system :

In[7]:=
crossProdHom[v1_,v2_]:=Append[Cross[Drop[v1,-1],Drop[v2,-1]],1]

In[11]:=
crossProdHom[{a,b,c,1},{d,e,f,1}]

Out[11]=
{-c e+b f,c d-a f,-b d+a e,1}

Meilleures salutations

Florian Jaccard
EICN-HES
e-mail : jaccardf at eicn.ch


-----Message d'origine-----
De : Umby [mailto:umprisco at unina.it]
Envoyé : mar., 9. juillet 2002 12:51
À : mathgroup at smc.vnet.net
Objet : [mg35367] cross product


Hi group,

how can I achieve the CrossProduct of two 4*1 vectors (in homogeneous
coordinate)?
For instance: CrossProduct[{a,b,c,1},{d,e,f,1}]
Thanks in advance

Umby






  • Prev by Date: RE: Re: RE: RE: Corrupted Files & Version 4.2 Problems
  • Next by Date: Re: Re: RE: RE: Corrupted Files & Version 4.2 Problems
  • Previous by thread: Re: cross product
  • Next by thread: Re: cross product