RE: How to compute a MatrixPower using: A^n = P D^n Inverse[P]
- To: mathgroup at smc.vnet.net
- Subject: [mg34985] RE: [mg34976] How to compute a MatrixPower using: A^n = P D^n Inverse[P]
- From: "Florian Jaccard" <jaccardf at eicn.ch>
- Date: Tue, 18 Jun 2002 02:48:24 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
Hello ! Here a way like you want the students to do it : In[3]:= a={{3,1,0},{1,2,-1},{0,-1,3}} Out[3]= {{3,1,0},{1,2,-1},{0,-1,3}} matrice of base change : In[4]:= p=Transpose[Eigenvectors[a]] Out[4]= {{-1,1,-1},{2,0,-1},{1,1,1}} diagonal matrix : In[5]:= d=Inverse[p].a.p Out[5]= {{1,0,0},{0,3,0},{0,0,4}} contrôle : In[6]:= Eigenvalues[a] Out[6]= {1,3,4} In[9]:= Simplify[aPuissancen=p.d^n.Inverse[p],n>0]//MatrixForm contrôle : In[12]:= Simplify[aPuissancen\[Equal]MatrixPower[a,n],n>0] Out[12]= True Meilleures salutations Florian Jaccard professeur de Mathématiques EICN-HES 7, av. de l'Hôtel-de-Ville CH-2400 Le Locle e-mail : jaccardf at eicn.ch -----Message d'origine----- De : J. Guillermo Sanchez [mailto:guillerm at usal.es] Envoyé : lun., 17. juin 2002 09:27 À : mathgroup at smc.vnet.net Objet : [mg34976] How to compute a MatrixPower using: A^n = P D^n Inverse[P] I have the matrix A == {{3,1,0},{1,2,-1},{0,-1,3}} For educational purpose I would like to evaluate A^n (* I mean MatrixPower[A,n]*) using the following matrix property A^n == P D^n Inverse[P] (*D mean Diagonal Matrix *) How can I do with Mathematica? (Methods to obtain P and D) Thanks Guillermo Sanchez