Re: How to compute a MatrixPower using: A^n = P D^n Inverse[P]
- To: mathgroup at smc.vnet.net
- Subject: [mg34994] Re: [mg34976] How to compute a MatrixPower using: A^n = P D^n Inverse[P]
- From: Adriano Pascoletti <pascolet at dimi.uniud.it>
- Date: Tue, 18 Jun 2002 02:48:37 -0400 (EDT)
- References: <200206170726.DAA18874@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
You can use Eigensystem or JordanDecomposition as follows: Eigensystem In[1]:= A = {{3, 1, 0}, {1, 2, -1}, {0, -1, 3}}; {evals, M} = Eigensystem[A]; M = Transpose[M]; M . DiagonalMatrix[evals^n] . Inverse[M] Out[2]= {{1/6 + 3^n/2 + 4^n/3, -(1/3) + 4^n/3, -(1/6) + 3^n/2 - 4^n/3}, {-(1/3) + 4^n/3, 2/3 + 4^n/3, 1/3 - 4^n/3}, {-(1/6) + 3^n/2 - 4^n/3, 1/3 - 4^n/3, 1/6 + 3^n/2 + 4^n/3}} JordanDecomposition In[3]:= {P, Diag} = JordanDecomposition[A]; evals = Tr[Diag, List]; P . DiagonalMatrix[evals^n] . Inverse[P] Out[4]= {{1/6 + 3^n/2 + 4^n/3, -(1/3) + 4^n/3, -(1/6) + 3^n/2 - 4^n/3}, {-(1/3) + 4^n/3, 2/3 + 4^n/3, 1/3 - 4^n/3}, {-(1/6) + 3^n/2 - 4^n/3, 1/3 - 4^n/3, 1/6 + 3^n/2 + 4^n/3}} Adriano Pascoletti >I have the matrix > >A == {{3,1,0},{1,2,-1},{0,-1,3}} > >For educational purpose I would like to evaluate > >A^n (* I mean MatrixPower[A,n]*) > >using the following matrix property > >A^n == P D^n Inverse[P] (*D mean Diagonal Matrix *) > >How can I do with Mathematica? (Methods to obtain P and D) > >Thanks > >Guillermo Sanchez
- References:
- How to compute a MatrixPower using: A^n = P D^n Inverse[P]
- From: "J. Guillermo Sanchez" <guillerm@usal.es>
- How to compute a MatrixPower using: A^n = P D^n Inverse[P]