Re: PolynomialQ ?
- To: mathgroup at smc.vnet.net
- Subject: [mg35122] Re: PolynomialQ ?
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Tue, 25 Jun 2002 03:42:39 -0400 (EDT)
- References: <ae4en8$9bc$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Juan, p is a constant polynomial in y, z^2 and {u,v}. We can test for actual appearance in polynomial fashion by using Exponent: p = x^3 - 2*x^2 + x - 1; PolynomialQ[p,x]&&(Min[Exponent[p,x]]>0) True PolynomialQ[p,y]&&(Min[Exponent[p,y]]>0) False PolynomialQ[p,z^2]&&(Min[Exponent[p,z^2]]>0) False PolynomialQ[p,{u,v}]&&(Min[Exponent[p,{u,v}]]>0) False -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Juan" <erfa11 at hotmail.com> wrote in message news:ae4en8$9bc$1 at smc.vnet.net... > Hi,I tried to check is a polynomial have a variable, ussing the function > PolynomialQ. > > In[1]:=p = x^3 - 2*x^2 + x - 1; > In[2]:=PolynomialQ[p, x] > Out[2]=True > In[3]:=PolynomialQ[p, y] > Out[3]=True > In[4]:=PolynomialQ[p, z^2] > Out[4]=True > In[5]:=PolynomialQ[p, {u, v}] > Out[5]=True > > What is the thing I am doing wrong? > > Regards.Juan > > _________________________________________________________________ > Descargue GRATUITAMENTE MSN Explorer en > http://explorer.yupimsn.com/intl.asp. > >