Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2002
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*November
*December
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2002

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: PolynomialQ ?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg35122] Re: PolynomialQ ?
  • From: "Allan Hayes" <hay at haystack.demon.co.uk>
  • Date: Tue, 25 Jun 2002 03:42:39 -0400 (EDT)
  • References: <ae4en8$9bc$1@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Juan,
p is a constant polynomial in y,  z^2 and {u,v}.

We can test for actual appearance in polynomial fashion by using Exponent:

p = x^3 - 2*x^2 + x - 1;

PolynomialQ[p,x]&&(Min[Exponent[p,x]]>0)

    True

PolynomialQ[p,y]&&(Min[Exponent[p,y]]>0)

    False

PolynomialQ[p,z^2]&&(Min[Exponent[p,z^2]]>0)

    False

PolynomialQ[p,{u,v}]&&(Min[Exponent[p,{u,v}]]>0)

    False



--
Allan

---------------------
Allan Hayes
Mathematica Training and Consulting
Leicester UK
www.haystack.demon.co.uk
hay at haystack.demon.co.uk
Voice: +44 (0)116 271 4198
Fax: +44 (0)870 164 0565


"Juan" <erfa11 at hotmail.com> wrote in message
news:ae4en8$9bc$1 at smc.vnet.net...
> Hi,I tried to check is a polynomial have a variable, ussing the function
> PolynomialQ.
>
> In[1]:=p = x^3 - 2*x^2 + x - 1;
> In[2]:=PolynomialQ[p, x]
> Out[2]=True
> In[3]:=PolynomialQ[p, y]
> Out[3]=True
> In[4]:=PolynomialQ[p, z^2]
> Out[4]=True
> In[5]:=PolynomialQ[p, {u, v}]
> Out[5]=True
>
> What is the thing I am doing wrong?
>
> Regards.Juan
>
> _________________________________________________________________
> Descargue GRATUITAMENTE MSN Explorer en
> http://explorer.yupimsn.com/intl.asp.
>
>



  • Prev by Date: Re: FrameTick Problem
  • Next by Date: RE: FrameTick Problem
  • Previous by thread: Re: PolynomialQ ?
  • Next by thread: inverse square law attraction