Re: Hypergeometric rational/real discrepancy (bug?)
- To: mathgroup at smc.vnet.net
- Subject: [mg34142] Re: [mg34117] Hypergeometric rational/real discrepancy (bug?)
- From: BobHanlon at aol.com
- Date: Mon, 6 May 2002 05:20:11 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 5/4/02 5:50:18 AM, dreeves at eecs.umich.edu writes: >Any reason why these 2 lines should produce such different results: > >Hypergeometric2F1Regularized[1, m - 2, m + 1, x] /. {m -> 1, x -> 1} > >Hypergeometric2F1Regularized[1, m - 2, m + 1, x] /. {m -> 1, x -> 1.} > >I'm using Mathematica 4.1 -- same result on Linux, Solaris, and Windows. > Same problem on a Mac OS X $Version 4.1 for Mac OS X (November 5, 2001) Hypergeometric2F1Regularized[1, m-2, m+1, x]/. {{m->1, x->1}, {x->1, m->1}, {m->1, x->1.}, {x->1., m->1}} {1/2, 1/2, 0.25, 0.25} If this function is expanded before substitution the problem is avoided FunctionExpand[ Hypergeometric2F1Regularized[1, m-2, m+1, x]]/. {{m->1, x->1}, {x->1, m->1}, {m->1, x->1.}, {x->1., m->1}} {1/2, 1/2, 0.5, 0.5} It also works properly if the substitutions are taken in two steps with m substituted first Hypergeometric2F1Regularized[1, m-2, m+1, x]/. m->1 /. x->1. 0.5 Plot3D[Hypergeometric2F1Regularized[1, m-2, m+1, x], {m, .5, 1.5}, {x, 0, 1}, PlotRange -> {Automatic, Automatic, {0.25,1}}]; Plot3D[Hypergeometric2F1[1, m-2, m+1, x]/ Gamma[m+1], {m, 0.5, 1.5}, {x, 0, 1}, PlotRange -> {Automatic, Automatic, {0.25,1}}]; Bob Hanlon Chantilly, VA USA