Re: solve - integer solution
- To: mathgroup at smc.vnet.net
- Subject: [mg34156] Re: [mg34145] solve - integer solution
- From: BobHanlon at aol.com
- Date: Tue, 7 May 2002 03:53:50 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 5/6/02 6:11:49 AM, c.krook at student.tue.nl writes: >I need to find an instance from the integers that satisfies the following >equation: > >{12 c[1, 0] + 12 c[2, 0] + 25 c[3, 0] - 50 c[3, 1] + 25 c[4, 0] - 50 c[4, >1], > 12 c[1, 1] + 12 c[2, 1] + 10 c[3, 0] + 15 c[3, 1] + 10 c[4, 0] + 15 c[4, >1], > c[1, 0] + 2 c[2, 0], c[1, 1] + 2 c[2, 1], c[3, 0] - 5 c[4, 1], > c[3, 1] + c[4, 0] - c[4, 1]}=={0,0,0,0,0,0} > >Using Solve doesn't give (explicit) integer solutions; Furthermore, since >I >only need an arbitrary integer-instance is there an easier way to obtain >one? (if not, how can I adjust solve?) >(this is small example; my actual problem involves much larger lists) > eqns = { 12 c[1,0]+12 c[2,0]+25 c[3,0]-50 c[3,1]+ 25 c[4,0]-50 c[4,1], 12 c[1,1]+12 c[2,1]+10 c[3,0]+15 c[3,1]+ 10 c[4,0]+15 c[4,1], c[1,0]+2 c[2,0], c[1,1]+2 c[2,1], c[3,0]-5 c[4,1], c[3,1]+c[4,0]-c[4,1]}== {0,0,0,0,0,0}; vars = Cases[eqns, c[_,_], Infinity]//Union; Reduce[eqns, vars] Off[Solve::svars] This will give nine solution sets Flatten[ Table[ Join[ Solve[eqns /. (t={c[4,0]->12*m, c[4,1]->12*n}), vars][[1]], t], {m,-1,1}, {n,-1,1}], 1]//ColumnForm Bob Hanlon Chantilly, VA USA