Re: Factoring a polynomial
- To: mathgroup at smc.vnet.net
- Subject: [mg37107] Re: Factoring a polynomial
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Thu, 10 Oct 2002 03:20:36 -0400 (EDT)
- References: <ao0tp8$gsq$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Carlos, p1=x^6+9/14*x^5+9/28*x^4+3/35*x^3+9/700*x^2+9/8750*x+3/87500; We can't expect this to be easy or even possible in terms of radicals (the general quintic is not solvable interms of radicals). But, using the function FactorR given in my posting, Re:factoring quartic over radicals, sent a few days (08/012/02) ago, we get p2=FactorR[p1,x] (x^2 - 2*x*Root[3 + 45*#1 + 225*#1^2 + 700*#1^3 & , 1] + Root[-3 + 225*#1^2 - 5625*#1^4 + 87500*#1^6 & , 2]^2)* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 2] + Root[9 - 1350*#1^2 + 84375*#1^4 - 3056250*#1^6 - 11250000*#1^8 - 984375000*#1^10 + 7656250000*#1^12 & , 3]^2)* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 1] + Root[9 - 1350*#1^2 + 84375*#1^4 - 3056250*#1^6 - 11250000*#1^8 - 984375000*#1^10 + 7656250000*#1^12 & , 4]^2) Try to express the factors in terms of radicals p3=ToRadicals/@p2 (3/140 + (1/140)*(13/5)^(2/3)*3^(1/3) - (1/140)*(13/5)^(1/3)*3^(2/3) - 2*(-(3/28) - (1/28)*(13/5)^(2/3)*3^(1/3) + (1/28)*(13/5)^(1/3)*3^(2/3))*x + x^2)* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 2] + Root[9 - 1350*#1 + 84375*#1^2 - 3056250*#1^3 - 11250000*#1^4 - 984375000*#1^5 + 7656250000*#1^6 & , 1])* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 1] + Root[9 - 1350*#1 + 84375*#1^2 - 3056250*#1^3 - 11250000*#1^4 - 984375000*#1^5 + 7656250000*#1^6 & , 2]) We succeeded with the first factor f1=p3[[1]] 3/140 + (1/140)*(13/5)^(2/3)*3^(1/3) - (1/140)*(13/5)^(1/3)*3^(2/3) - 2*(-(3/28) - (1/28)*(13/5)^(2/3)*3^(1/3) + (1/28)*(13/5)^(1/3)*3^(2/3))*x + x^2 The product of the other two factors, in a form avoiding root objects, is easily found: q=PolynomialQuotient[p1,f1,x] 3/3500 + ((13/5)^(1/3)*3^(2/3))/3500 + (3/175 + (1/175)*(13/5)^(1/3)*3^(2/3))*x + (9/70 - (1/140)*(13/5)^(2/3)*3^(1/3) + (1/28)*(13/5)^(1/3)*3^(2/3))*x^2 + (3/7 - (1/14)*(13/5)^(2/3)*3^(1/3) + (1/14)*(13/5)^(1/3)*3^(2/3))*x^3 + x^4 5*(3 + 10*x*(6 + 5*x*(9 + 10*x*(3 + 7*x))))) Try FactorR on this f23=FactorR[q,x] (x^2 + ((-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920] + Im[(1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)* 15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)* 15^(2/3))^2)/1225000000 - (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))*((2250 - 25*13^(2/3)* 15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/306250000)))/ (4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)* 3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/ 3920])]])^2 - 2*x*((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + Re[(1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)* 15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)* 15^(2/3))^2)/1225000000 - (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))*((2250 - 25*13^(2/3)* 15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/306250000)))/ (4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)* 3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/ 3920])]]) + ((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)* 15^(2/3))/70000 + Re[(1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)* 15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)* 15^(2/3))^2)/1225000000 - (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))*((2250 - 25*13^(2/3)* 15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/306250000)))/ (4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)* 3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/ 3920])]])^2)* (x^2 + ((1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920] + Im[(-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)* 15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)* 15^(2/3))^2)/1225000000 + (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))*((2250 - 25*13^(2/3)* 15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/306250000)))/ (4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)* 3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/ 3920])]])^2 - 2*x*((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + Re[(-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)* 15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)* 15^(2/3))^2)/1225000000 + (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))*((2250 - 25*13^(2/3)* 15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/306250000)))/ (4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)* 3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/ 3920])]]) + ((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)* 15^(2/3))/70000 + Re[(-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)* 3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)* 15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)* 15^(2/3))^2)/1225000000 + (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))*((2250 - 25*13^(2/3)* 15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/306250000)))/ (4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)* 3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/ 3920])]])^2) We still use Re and Im -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Carlos Felippa" <carlos at colorado.edu> wrote in message news:ao0tp8$gsq$1 at smc.vnet.net... > Can Mathematica factor the polynomial > > p1=x^6+9/14*x^5+9/28*x^4+3/35*x^3+9/700*x^2+9/8750*x+3/87500; > > without a priori knowledge of the Extension field? >