Re: Factoring a polynomial (2)
- To: mathgroup at smc.vnet.net
- Subject: [mg37112] Re: Factoring a polynomial (2)
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Thu, 10 Oct 2002 03:20:44 -0400 (EDT)
- References: <ao0tp8$gsq$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Carlos, Futher to my previous posting (which gave the code for the function FactorR used below), here is a complete factorisation by radicals. I also test that the product of the factors gives the original polynomial. We want to factor the polynomial p1 = x^6 + (9/14)*x^5 + (9/28)*x^4 + (3/35)*x^3 + (9/700)*x^2 + (9/8750)*x + 3/87500; in radicals. We can't expect this to be easy or even possible in terms of radicals (the general quintic is not solvable interms of radicals). But, using the function FactorR given in my posting, Re:factoring quartic over radicals, sent a few days ago (08/012/02) , we get p2 = FactorR[p1, x] (x^2 - 2*x*Root[3 + 45*#1 + 225*#1^2 + 700*#1^3 & , 1] + Root[-3 + 225*#1^2 - 5625*#1^4 + 87500*#1^6 & , 2]^2)* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 2] + Root[9 - 1350*#1^2 + 84375*#1^4 - 3056250*#1^6 - 11250000*#1^8 - 984375000*#1^10 + 7656250000*#1^12 & , 3]^2)* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 1] + Root[9 - 1350*#1^2 + 84375*#1^4 - 3056250*#1^6 - 11250000*#1^8 - 984375000*#1^10 + 7656250000*#1^12 & , 4]^2) Try to change the root objects to radical form: p3 = p2 /. r_Root :> ToRadicals[r] (3/140 + (1/140)*(13/5)^(2/3)*3^(1/3) - (1/140)*(13/5)^(1/3)*3^(2/3) - 2*(-(3/28) - (1/28)*(13/5)^(2/3)*3^(1/3) + (1/28)*(13/5)^(1/3)*3^(2/3))*x + x^2)*(x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 2] + Root[9 - 1350*#1 + 84375*#1^2 - 3056250*#1^3 - 11250000*#1^4 - 984375000*#1^5 + 7656250000*#1^6 & , 1])* (x^2 - 2*x*Root[1827 + 65340*#1 + 974700*#1^2 + 7824000*#1^3 + 36360000*#1^4 + 100800000*#1^5 + 156800000*#1^6 & , 1] + Root[9 - 1350*#1 + 84375*#1^2 - 3056250*#1^3 - 11250000*#1^4 - 984375000*#1^5 + 7656250000*#1^6 & , 2]) We succeeded with the first factor: f1 = p3[[1]] 3/140 + (1/140)*(13/5)^(2/3)*3^(1/3) - (1/140)*(13/5)^(1/3)*3^(2/3) - 2*(-(3/28) - (1/28)*(13/5)^(2/3)*3^(1/3) + (1/28)*(13/5)^(1/3)*3^(2/3))*x + x^2 The product of the other two factors, in a form avoiding root objects, is easily found by division: q = PolynomialQuotient[p1, f1, x] 3/3500 + ((13/5)^(1/3)*3^(2/3))/3500 + (3/175 + (1/175)*(13/5)^(1/3)*3^(2/3))*x + (9/70 - (1/140)*(13/5)^(2/3)*3^(1/3) + (1/28)*(13/5)^(1/3)*3^(2/3))*x^2 + (3/7 - (1/14)*(13/5)^(2/3)*3^(1/3) + (1/14)*(13/5)^(1/3)*3^(2/3))*x^3 + x^4 Try FactorR on this f23 = FactorR[q, x] (x^2 + ((-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920] + Im[(1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)*15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2)/ 1225000000 - (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))* ((2250 - 25*13^(2/3)*15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/ 306250000)))/(4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)*3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/3920])]])^2 - 2*x*((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + Re[(1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)*15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2)/ 1225000000 - (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))* ((2250 - 25*13^(2/3)*15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/ 306250000)))/(4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)*3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/3920])]]) + ((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + Re[(1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)*15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2)/ 1225000000 - (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))* ((2250 - 25*13^(2/3)*15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/ 306250000)))/(4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)*3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/3920])]])^2)* (x^2 + ((1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920] + Im[(-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)*15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2)/ 1225000000 + (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))* ((2250 - 25*13^(2/3)*15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/ 306250000)))/(4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)*3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/3920])]])^2 - 2*x*((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + Re[(-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)*15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2)/ 1225000000 + (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))* ((2250 - 25*13^(2/3)*15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/ 306250000)))/(4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)*3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/3920])]]) + ((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + Re[(-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920 + (-2250 + 25*13^(2/3)*15^(1/3) - 125*13^(1/3)*15^(2/3))/8750 + (3*(7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2)/ 1225000000 + (-((2*(300 + 20*13^(1/3)*15^(2/3)))/4375) + (1/17500)*((7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))* ((2250 - 25*13^(2/3)*15^(1/3) + 125*13^(1/3)*15^(2/3))/4375 - (7500 - 250*13^(2/3)*15^(1/3) + 250*13^(1/3)*15^(2/3))^2/ 306250000)))/(4*Sqrt[-(117/1960) - (9/784)*(13/5)^(2/3)*3^(1/3) - (39*(13/5)^(1/3)*3^(2/3))/3920])]])^2) We try to get rid of the parts Re[.] and Im[.]:, f231 = f23 /. z:(_Re | _Im) :> ToRadicals[FullSimplify[z]] (((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 - (1/280)*Sqrt[3*(-390 + 13*13^(2/3)*15^(1/3) + 15*13^(1/3)*15^(2/3))])^2 + ((1/2)*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920] + (1/280)*Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)])^2 - 2*((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 - (1/280)*Sqrt[3*(-390 + 13*13^(2/3)*15^(1/3) + 15*13^(1/3)*15^(2/3))])*x + x^2)*(((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + (1/280)*Sqrt[3*(-390 + 13*13^(2/3)*15^(1/3) + 15*13^(1/3)*15^(2/3))])^2 + ((-(1/2))*Sqrt[117/1960 + (9/784)*(13/5)^(2/3)*3^(1/3) + (39*(13/5)^(1/3)*3^(2/3))/3920] + (1/280)*Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)])^2 - 2*((-7500 + 250*13^(2/3)*15^(1/3) - 250*13^(1/3)*15^(2/3))/70000 + (1/280)*Sqrt[3*(-390 + 13*13^(2/3)*15^(1/3) + 15*13^(1/3)*15^(2/3))])*x + x^2) We now have the ramaining two factors in radical form, but a little simplification helps: f232 = f231 /. (n_)?NumericQ :> Simplify[n] ((1/78400)*(30 - 13^(2/3)*15^(1/3) + 13^(1/3)*15^(2/3) + Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)])^2 + (1/78400)*(Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)] + Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)])^2 - (1/140)*(-30 + 13^(2/3)*15^(1/3) - 13^(1/3)*15^(2/3) - Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)])*x + x^2)* ((1/78400)*(-30 + 13^(2/3)*15^(1/3) - 13^(1/3)*15^(2/3) + Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)])^2 + (1/78400)*(Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)] - Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)])^2 - (1/140)*(-30 + 13^(2/3)*15^(1/3) - 13^(1/3)*15^(2/3) + Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)])*x + x^2) TEST Test if the product of the factors is equal to p1: prd1 = Collect[Expand[f232*f1], x] 172077/3841600000 - (4959*(13/5)^(2/3)*3^(1/3))/768320000 + (117*(13/5)^(1/3)*3^(2/3))/27440000 - (1/1920800000)* (3*Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]* Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]* Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]) + (1/3841600000)*((13/5)^(1/3)*3^(2/3)*Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]*Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]*Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]) + (491193/384160000 - (7731*(13/5)^(2/3)*3^(1/3))/76832000 + (117*(13/5)^(1/3)*3^(2/3))/2744000 - (1/384160000)* (9*Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]* Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]* Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]) - (1/384160000)*((13/5)^(2/3)*3^(1/3)*Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]*Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]*Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]) + (1/192080000)*((13/5)^(1/3)*3^(2/3)* Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]* Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]* Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]))*x + (1087173/76832000 - (12771*(13/5)^(2/3)*3^(1/3))/30732800 + (5967*(13/5)^(1/3)*3^(2/3))/30732800 - (1/76832000)* (9*Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]* Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]* Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]) - (1/153664000)*(3*(13/5)^(2/3)*3^(1/3)*Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]*Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]*Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]) + (1/153664000)*(3*(13/5)^(1/3)*3^(2/3)* Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]* Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]* Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]))*x^2 + (23871/274400 - (99*(13/5)^(2/3)*3^(1/3))/109760 + (663*(13/5)^(1/3)*3^(2/3))/ 548800 - (1/2744000)*(Sqrt[1170 + 45*13^(2/3)*15^(1/3) + 39*13^(1/3)*15^(2/3)]*Sqrt[-1170 + 39*13^(2/3)*15^(1/3) + 45*13^(1/3)*15^(2/3)]*Sqrt[1170 + 73*13^(2/3)*15^(1/3) + 67*13^(1/3)*15^(2/3)]))*x^3 + (9*x^4)/28 + (9*x^5)/14 + x^6 prd1 /. (n_)?NumericQ :> ToRadicals[FullSimplify[n]] 172077/3841600000 - (4959*(13/5)^(2/3)*3^(1/3))/768320000 + (117*(13/5)^(1/3)*3^(2/3))/27440000 - (9*(234 + 221*(13/5)^(1/3)*3^(2/3) - 33*13^(2/3)*15^(1/3)))/384160000 + (117*(-165 + 17*13^(2/3)*15^(1/3) + 6*13^(1/3)*15^(2/3)))/3841600000 + (9*x)/8750 + (9*x^2)/700 + (3*x^3)/35 + (9*x^4)/28 + (9*x^5)/14 + x^6 Together[%] (3 + 90*x + 1125*x^2 + 7500*x^3 + 28125*x^4 + 56250*x^5 + 87500*x^6)/87500 Apart[%] 3/87500 + (9*x)/8750 + (9*x^2)/700 + (3*x^3)/35 + (9*x^4)/28 + (9*x^5)/14 + x^6 This is p1: p1 3/87500 + (9*x)/8750 + (9*x^2)/700 + (3*x^3)/35 + (9*x^4)/28 + (9*x^5)/14 + x^6 ------------------ It is ususlly better to try to reduce a difference to zero than to reduce one form to another tst1 = Collect[Expand[f232*f1 - p1], x] tst2 = tst1 /. (n_)?NumericQ :> ToRadicals[FullSimplify[n]] 8073/768320000 - (4959*(13/5)^(2/3)*3^(1/3))/768320000 + (117*(13/5)^(1/3)*3^(2/3))/27440000 - (9*(234 + 221*(13/5)^(1/3)*3^(2/3) - 33*13^(2/3)*15^(1/3)))/384160000 + (117*(-165 + 17*13^(2/3)*15^(1/3) + 6*13^(1/3)*15^(2/3)))/3841600000 Together[%] 0 -- Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Carlos Felippa" <carlos at colorado.edu> wrote in message news:ao0tp8$gsq$1 at smc.vnet.net... > Can Mathematica factor the polynomial > > p1=x^6+9/14*x^5+9/28*x^4+3/35*x^3+9/700*x^2+9/8750*x+3/87500; > > without a priori knowledge of the Extension field? >