Re: Complex numbers
- To: mathgroup at smc.vnet.net
- Subject: [mg37141] Re: [mg37138] Complex numbers
- From: Andrzej Kozlowski <andrzej at platon.c.u-tokyo.ac.jp>
- Date: Sun, 13 Oct 2002 05:56:21 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
To start with, what you are saying is simply not true. A simple example: In[1]:= Abs[(z1 - z2)/(1 - z1*Conjugate[z2])] /. {z1 -> 1 + I, z2 -> 1 - I} Out[1]= 2/Sqrt[5] Presumably you meant Abs[(z1 - z2)/(z1 - Conjugate[z2]) in which case: In[1]:= ComplexExpand[Abs[(z1-z2)/(z1- Conjugate[z2])],TargetFunctions->{Im,Re}] Out[1]= 1 Andrzej Kozlowski Yokohama, Japan http://www.mimuw.edu.pl/~akoz/ http://platon.c.u-tokyo.ac.jp/andrzej/ On Saturday, October 12, 2002, at 06:05 PM, CeZaR wrote: > Hi, > > I want to perform this calculation: > > In[1]:=z1 = a1 + b1 I > Out[1]=a1 + \[ImaginaryI] b1 > In[3]:=z2 = a2 + b2 I > Out[3]=a2 + \[ImaginaryI] b2 > In[19]:=Abs[(z1 - z2)/(1 - z1 Conjugate[z2])] > > This should output 1! But it doesn't work... > > Also, Abs[a1+b1 I] doesn't get the right result. > Any ideeas? > > Thanks, > CeZaR > > >