real valued function from complex
- To: mathgroup at smc.vnet.net
- Subject: [mg37354] real valued function from complex
- From: strgh at mimosa.csv.warwick.ac.uk ()
- Date: Fri, 25 Oct 2002 02:46:35 -0400 (EDT)
- Organization: University of Warwick, UK
- Sender: owner-wri-mathgroup at wolfram.com
I want to define a real-valued function f[t_] from the values of a complex-valued function on a line parametrised by t, and then be able to handle f like any other real function (differentiate it etc.) A cute example is: Clear[rz, drz]; rz[t_] := Re[Zeta[1/2 + I*t]]; drz[t_] := D[rz[t], t] (* the sort of thing I want to do *) so that Plot[{drz[t], Im[Zeta[1/2 + I*t]]}, {t, 0, 40}, PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 0, 1]}] will work (it doesn't). I can get a quick & dirty numerical approximation in this case (including, as a reality check, the original function I'm differentiating) using something like Clear[rz, iz, rztable, plotzeta]; rz[t_] := Re[Zeta[1/2 + I*t]]; iz[t_] := Im[Zeta[1/2 + I*t]]; rztable[tmin_, tmax_] := Table[{t, rz[t]}, {t, tmin, tmax, (tmax - tmin)/50}]; plotzeta[tmin_, tmax_] := Module[{rzapprox}, rzapprox = Interpolation[rztable[tmin, tmax]]; Plot[{rzapprox'[t], rz[t], iz[t]}, {t, 0, 40}, PlotStyle -> {RGBColor[1, 0, 0], RGBColor[0, 1, 0], RGBColor[0, 0, 1]}] ] plotzeta[0, 40] However I'd prefer to leave the numerical approximations till the last minute (i.e. plotting), and the interpolation table would need tweaking on a case-by-case basis. Any other suggestions? (sorry if there is an "obvious" answer). -- Ewart Shaw -- J.E.H.Shaw [Ewart Shaw] strgh at uk.ac.warwick TEL: +44 2476 523069 Department of Statistics, University of Warwick, Coventry CV4 7AL, U.K. http://www.warwick.ac.uk/statsdept/Staff/JEHS/ 3 ((4&({*.(=+/))++/=3:)@([:,/0&,^:(i.3)@|:"2^:2))&.>@]^:(i.@[) <#:3 6 2
- Follow-Ups:
- Re: real valued function from complex
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: real valued function from complex