'#1' raised to a power in result of a Solve[] call?
- To: mathgroup at smc.vnet.net
- Subject: [mg40568] '#1' raised to a power in result of a Solve[] call?
- From: ergeorge at worldnet.att.net (eg)
- Date: Thu, 10 Apr 2003 03:39:53 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
What does this mean? Here's part of the solution: \!\(\(\(\(a -> Root[324\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2 - 972\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2 + 729\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^4 + 432\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 - 864\ ecc\^2\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 + 432\ ecc\^4\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 - 648\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ #1\^2 + 1296\ ecc\^2\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ #1\^2 - 648\ ecc\^4\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ #1\^2 + 144\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 - 432\ ecc\^2\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 \ + 432\ ecc\^4\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 - 144\ ecc\^6\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 \ - 64\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 + 448\ ecc\^2\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 - 1344\ ecc\^4\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 + 2240\ ecc\^6\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 - 2240\ ecc\^8\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 + 1344\ ecc\^10\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 - 448\ ecc\^12\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 + 64\ ecc\^14\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 &, 1]\)\(}\)\)\(,\)\)\) Any ideas? I found the stuff on slot numbers and pure functions in the manual, but either this doesn't fit that explenation, or I don't understand slot numbers & pure functions. Thanks!
- Follow-Ups:
- Re: '#1' raised to a power in result of a Solve[] call?
- From: Dr Bob <majort@cox-internet.com>
- Re: '#1' raised to a power in result of a Solve[] call?