Re: '#1' raised to a power in result of a Solve[] call?
- To: mathgroup at smc.vnet.net
- Subject: [mg40635] Re: [mg40568] '#1' raised to a power in result of a Solve[] call?
- From: Dr Bob <majort at cox-internet.com>
- Date: Fri, 11 Apr 2003 02:05:44 -0400 (EDT)
- References: <200304100739.DAA24233@smc.vnet.net>
- Reply-to: majort at cox-internet.com
- Sender: owner-wri-mathgroup at wolfram.com
The first argument of Root in your expression is a pure function of one argument, and the argument's placeholder is #. Look at Root examples for the meaning of Root. When you want to paste something like that into e-mail, here's one way to do it: ugly expression like yours %//InputForm copy-and-pasteable output InputForm gives a purely textual way of entering the same expression, with no subscripts, superscripts, root symbols, or special characters. Simple copy and paste works if there already are none of those things in the original expression. Your expression had powers written as superscripts and roots written with the root symbol. Not only does the messy method make an ugly e-mail, it doesn't paste back into Mathematica at our end properly. In this case, for instance, the space in "u Cos" was lost in a couple of places. There's more information, including some easier methods, discussed at: http://forums.wolfram.com/mathgroup/archive/2002/Jun/msg00202.html http://forums.wolfram.com/mathgroup/archive/2002/Jun/msg00191.html and especially http://forums.wolfram.com/mathgroup/archive/2002/Jun/msg00256.html I use Omega Consulting's palette, described in the last message. Bobby On Thu, 10 Apr 2003 03:39:53 -0400 (EDT), eg <ergeorge at worldnet.att.net> wrote: > What does this mean? Here's part of the solution: > > \!\(\(\(\(a -> Root[324\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2 - > 972\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2\ > Sin[inc]\^2 + > 729\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2\ > Sin[inc]\^4 + > 432\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 - 864\ ecc\^2\ J2\^3\ k\^2\ u\ > Cos[inc]\^2\ #1\^2 + 432\ ecc\^4\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 - > 648\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ #1\^2 + 1296\ ecc\^2\ > J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ > #1\^2 - > 648\ ecc\^4\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ > #1\^2 + > 144\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 > - > 432\ ecc\^2\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ > Cos[inc]\^2\ #1\^4 \ > + 432\ ecc\^4\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 - > 144\ ecc\^6\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ > Cos[inc]\^2\ #1\^4 \ > - 64\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 + 448\ ecc\^2\ \@\(1 - > ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 > - > 1344\ ecc\^4\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 > + > 2240\ ecc\^6\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 > - > 2240\ ecc\^8\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 > + > 1344\ ecc\^10\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ > #1\^11 - > 448\ ecc\^12\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 > + > 64\ ecc\^14\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 > &, > 1]\)\(}\)\)\(,\)\)\) > > Any ideas? I found the stuff on slot numbers and pure functions in > the manual, but either this doesn't fit that explenation, or I don't > understand slot numbers & pure functions. > > Thanks! > > -- majort at cox-internet.com Bobby R. Treat
- References:
- '#1' raised to a power in result of a Solve[] call?
- From: ergeorge@worldnet.att.net (eg)
- '#1' raised to a power in result of a Solve[] call?