Re: solve errors...
- To: mathgroup at smc.vnet.net
- Subject: [mg43071] Re: solve errors...
- From: sean kim <shawn_s_kim at yahoo.com>
- Date: Sun, 10 Aug 2003 01:46:58 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
appears that is an artifact of the yahoo email thing. yahoo seems to have put a line where the space is mising between k's and variables... the original i have is ok though. and that's what was used to solving for the variables. thank you. --- wouter meeussen <wouter.meeussen at pandora.be> wrote: > dear Sean, > > watch those typo's: > Your Out[38] contains > Derivative[1][k][t] == k11*h[t]*i[t] - k12*k[t] - k13*d[t]*k[t] + > k14l[t], > ... > and "k14l[t] " should be "k14 * l[t]" > same for > Derivative[1][o][t] == > k18*m[t]*n[t] - k19*o[t] - k20*o[t]*p[t] + k21q[t], > > and, personally I would replace function "t[t]" with "tt[ t ]" for > clarity. > > Success, > > Wouter. > > ----- Original Message ----- > From: "sean kim" <shawn_s_kim at yahoo.com> To: mathgroup at smc.vnet.net > Newsgroups: comp.soft-sys.math.mathematica > Sent: Saturday, August 09, 2003 9:13 AM > Subject: [mg43071] solve errors... > > > > Hello Group. > > > > I don't know if this question has been adressed in the past... If > there > > was a post about it, I haven't been able to locate it. > > > > here's the problem. > > > > Please consider the following reduced steady state system which is > > generated from a larger ODE system. with some assumptions, the > larger > > system reduces down to below. ( original system is posted at the > end of > > the message) > > > > { 0 == -k23 n[t] s[t] + k24 t[t], > > 0 == k23 n[t] s[t] - k24 t[t], > > 0 == -k11 h[t] i[t] + k12 k[t], > > 0 == k11 h[t] i[t] - k12 k[t], > > 0 == -k16 e[t] - k28 e[t] i[t] + k17 w[t] + k29 x[t], > > 0 == k16 e[t] - k17 w[t], > > 0 == k28 e[t] i[t] - k29 x[t] - k30 x[t], > > 0 == -k23 n[t] s[t] + k24 t[t], > > 0 == -k28 e[t] i[t] - k11 h[t] i[t] + k12 k[t] + k29 x[t] + k30 > > x[t]} > > > > as far as i understand it, given a number of algebraic equations, > with > > equal number of variables, then the system should be solvable in > terms > > of the variables. Am I not correct? > > > > there are 9 equations and 9 variables in this system, shouldn't it > > render itself to solution? it appears it isn't. > > > > In[36]:= > > Solve[{0 == -k23 n[t] s[t] + k24 t[t], > > 0 == k23 n[t] s[t] - k24 t[t], > > 0 == -k11 h[t] i[t] + k12 k[t], > > 0 == k11 h[t] i[t] - k12 k[t], > > 0 == -k16 e[t] - k28 e[t] i[t] + k17 w[t] + k29 x[t], > > 0 == k16 e[t] - k17 w[t], > > 0 == k28 e[t] i[t] - k29 x[t] - k30 x[t], > > 0 == -k23 n[t] s[t] + k24 t[t], > > 0 == -k28 e[t] i[t] - k11 h[t] i[t] + k12 k[t] + k29 x[t] + k30 > > x[t]}, > > {n[t], s[t], t[t], h[t], i[t], k[t], e[t], w[t], x[t]}] > > Solve::"svars": "Equations may not give solutions for all \"solve\" > \ > > variables." > > Out[36]= > > \!\({{t[t] -> \(k23\ n[t]\ s[t]\)\/k24, w[t] -> \(k16\ e[t]\)\/k17, > > k[t] -> 0, x[t] -> 0, i[t] -> 0}, {t[t] -> \(k23\ n[t]\ > > s[t]\)\/k24, > > w[t] -> 0, k[t] -> \(k11\ h[t]\ i[t]\)\/k12, x[t] -> 0, e[t] > -> > > 0}}\) > > > > > > Why is this happening? is there a way to fool the mathematica to > solve > > for the variables? > > > > and when you get two solutions for steady state systems, does that > mean > > there are two steady states? > > > > > > thanks all in advance for any and all helpful comments. > > > > below is the original system prior to steady state reduction > > > > > > Out[38]= > > \!\(\* > > RowBox[{"{", > > RowBox[{ > > RowBox[{ > > RowBox[{ > > SuperscriptBox["a", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(\(-k1\)\ a[t]\ b[t] + k2\ c[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["b", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(\(-k1\)\ a[t]\ b[t] + k2\ c[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["c", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k1\ a[t]\ b[t] - k2\ c[t] - k3\ c[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["d", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k3\ c[t] - k4\ d[t]\ e[t] + k5\ f[t] + k6\ f[t] - > > k8\ d[t]\ i[t] + 9\ j[t] - k13\ d[t]\ k[t] + k14\ > l[t]\)}], > > ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["f", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k4\ d[t]\ e[t] - k5\ f[t] - k6\ f[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["j", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k8\ d[t]\ i[t] - 9\ j[t] - k10\ j[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["p", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(\(-k20\)\ o[t]\ p[t] + k21\ q[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["n", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(\(-k18\)\ m[t]\ n[t] + k19\ o[t] - k23\ n[t]\ s[t] > + > > k24\ t[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["t", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k23\ n[t]\ s[t] - k24\ t[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["h", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k7\ d[t] - k11\ h[t]\ i[t] + k12\ k[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["k", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k11\ h[t]\ i[t] - k12\ k[t] - k13\ d[t]\ k[t] + > k14\ > > l[t]\)}], > > ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["l", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k13\ d[t]\ k[t] - k14\ l[t] - k15\ l[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["u", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(\(-k25\)\ m[t]\ u[t] + k26\ v[t] + k27\ v[t]\)}], > ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["e", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(\(-k16\)\ e[t] - k4\ d[t]\ e[t] + k5\ f[t] - > > k28\ e[t]\ i[t] + k17\ w[t] + k29\ x[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["w", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k16\ e[t] + k27\ v[t] - k17\ w[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["g", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k6\ f[t] - k16\ g[t] + k17\ m[t]\)}], ",", > > RowBox[{ > > RowBox[{ > > SuperscriptBox["m", "\[Prime]", > > MultilineFunction->None], "[", "t", "]"}], > > "==", \(k16\ g[t] - k17\ m[t] - k18\ m[t]\ n[t] + k19\ o[t] > - > > k25\ m[t]\ u[t] + k26\ v[t]\)}], ",", > > RowBox[{ > === message truncated === ===== when riding a dead horse, some dismount. while others... write memoirs on the subject of riding a dead horse. __________________________________ Do you Yahoo!? The New Yahoo! Search - Faster. Easier. Bingo. http://search.yahoo.com