Re: Leibniz Definition Of Pi Not In 5.0.0?
- To: mathgroup at smc.vnet.net
- Subject: [mg43219] Re: Leibniz Definition Of Pi Not In 5.0.0?
- From: Andrzej Kozlowski <andrzej at platon.c.u-tokyo.ac.jp>
- Date: Wed, 20 Aug 2003 22:25:10 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
On Tuesday, August 19, 2003, at 01:53 PM, H. Burke Jensen wrote: > $Version: 5.0 for Microsoft Windows (June 10, 2003) > > $MachineType: PC > > $OperatingSystem: WindowsNT > > > > Hello MathGroup, > > > > Does Mathematica 5.0.0 not recognize the Leibniz definition of Pi > [Ref.1]? > This was recognized in Mathematica 3.0.1 and reported to WRI. > > > > In[1]:= > > \!\(\[Pi]\/4 === \[Sum]\+\(n = 1\)\%\[Infinity] If[ > > EvenQ[n] \[Equal] True, \(-\(1\/\(2 n - 1\)\)\), 1\/\(2 n - > 1\)]\) > > > > Sum::div: Sum does not converge. > > > > Sum::div: Sum does not converge. > > > > Out[1]= > > False > > > > References: > > [1] Martin, George E., The Foundations of Geometry and the > Non-Euclidean > Plane, Springer, 1975, p. 157-158. > > > > Thank you, > > -H. Burke Jensen > > hbj at ColoradoKidd.com > > The Colorado Kidd® > > www.ColoradoKidd.com > > > This works fine: In[20]:= Sum[(-1)^(n + 1)*(1/(2*n - 1)), {n, 1, Infinity}] Out[20]= Pi/4 Andrzej Kozlowski Yokohama, Japan http://www.mimuw.edu.pl/~akoz/ http://platon.c.u-tokyo.ac.jp/andrzej/