Re: Leibniz Definition Of Pi Not In 5.0.0?
- To: mathgroup at smc.vnet.net
- Subject: [mg43216] Re: Leibniz Definition Of Pi Not In 5.0.0?
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Wed, 20 Aug 2003 22:25:05 -0400 (EDT)
- Organization: Universitaet Leipzig
- References: <bht3v3$n4n$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
- Sender: owner-wri-mathgroup at wolfram.com
Hi, I wonder, that Leipniz use If[], but -Sum[(-1)^n/(2*n - 1), {n, 1, Infinity}] gives Pi/4 and it is more natural to use (-1)^n for the sign switch. Regards Jens "H. Burke Jensen" wrote: > > $Version: 5.0 for Microsoft Windows (June 10, 2003) > > $MachineType: PC > > $OperatingSystem: WindowsNT > > Hello MathGroup, > > Does Mathematica 5.0.0 not recognize the Leibniz definition of Pi [Ref.1]? > This was recognized in Mathematica 3.0.1 and reported to WRI. > > In[1]:= > > \!\(\[Pi]\/4 === \[Sum]\+\(n = 1\)\%\[Infinity] If[ > > EvenQ[n] \[Equal] True, \(-\(1\/\(2 n - 1\)\)\), 1\/\(2 n - 1\)]\) > > Sum::div: Sum does not converge. > > Sum::div: Sum does not converge. > > Out[1]= > > False > > References: > > [1] Martin, George E., The Foundations of Geometry and the Non-Euclidean > Plane, Springer, 1975, p. 157-158. > > Thank you, > > -H. Burke Jensen > > hbj at ColoradoKidd.com > > The Colorado Kidd® > > www.ColoradoKidd.com