Re: Numerical Integration of Large Expression
- To: mathgroup at smc.vnet.net
- Subject: [mg43331] Re: Numerical Integration of Large Expression
- From: bobhanlon at aol.com (Bob Hanlon)
- Date: Mon, 25 Aug 2003 04:10:42 -0400 (EDT)
- References: <bi9vc0$cil$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
If I understood what you are asking, this can be integrated symbolically. For example, Simplify[Integrate[(HermiteH[9, x]*Exp[-a*x])^2, x]] -((1/a^19)*((256*(512*a^18*x^18 + 4608*a^17*x^17 - 2304*a^16*(8*a^2 - 17)*x^16 - 18432*a^15*(8*a^2 - 17)*x^15 + 13824*a^14*(19*a^4 - 80*a^2 + 170)*x^14 + 96768*a^13*(19*a^4 - 80*a^2 + 170)*x^13 - 16128*a^12*(118*a^6 - 741*a^4 + 3120*a^2 - 6630)* x^12 - 96768*a^11*(118*a^6 - 741*a^4 + 3120*a^2 - 6630)*x^11 + 12096*a^10*(623*a^8 - 5192*a^6 + 32604*a^4 - 137280*a^2 + 291720)*x^10 + 60480*a^9*(623*a^8 - 5192*a^6 + 32604*a^4 - 137280*a^2 + 291720)*x^9 - 272160*a^8*(60*a^10 - 623*a^8 + 5192*a^6 - 32604*a^4 + 137280*a^2 - 291720)*x^8 - 1088640*a^7*(60*a^10 - 623*a^8 + 5192*a^6 - 32604*a^4 + 137280*a^2 - 291720)*x^7 + 635040*a^6*(29*a^12 - 360*a^10 + 3738*a^8 - 31152*a^6 + 195624*a^4 - 823680*a^2 + 1750320)* x^6 + 1905120*a^5*(29*a^12 - 360*a^10 + 3738*a^8 - 31152*a^6 + 195624*a^4 - 823680*a^2 + 1750320)*x^5 - 4762800*a^4*(2*a^14 - 29*a^12 + 360*a^10 - 3738*a^8 + 31152*a^6 - 195624*a^4 + 823680*a^2 - 1750320)*x^4 - 9525600*a^3*(2*a^14 - 29*a^12 + 360*a^10 - 3738*a^8 + 31152*a^6 - 195624*a^4 + 823680*a^2 - 1750320)*x^3 + 1786050*a^2*(a^16 - 16*a^14 + 232*a^12 - 2880*a^10 + 29904*a^8 - 249216*a^6 + 1564992*a^4 - 6589440*a^2 + 14002560)*x^2 + 1786050*a*(a^16 - 16*a^14 + 232*a^12 - 2880*a^10 + 29904*a^8 - 249216*a^6 + 1564992*a^4 - 6589440*a^2 + 14002560)*x + 893025*(a^16 - 16*a^14 + 232*a^12 - 2880*a^10 + 29904*a^8 - 249216*a^6 + 1564992*a^4 - 6589440*a^2 + 14002560)))/E^(2*a*x))) Larger orders merely cause longer output, but can be handled. The simplification step takes longer. However, you can store the results (function definition) and need only do each integration once. Subsequent evaluations of the stored result will be very fast. Bob Hanlon In article <bi9vc0$cil$1 at smc.vnet.net>, reallymadsquid at hotmail.com (Musaddiq Awan) wrote: << I am trying to use Rayleigh-Schrodinger Perturbation theory to modify the harmonic oscillator. The wavefunctions are a product of the Hermite polynomials and an exponential function. I can integrate the 2nd order approximation up to n = 8. When I try to integrate for n = 9 the computer does not return a result. The Hermite Polynomial at n = 9 is as follows 30240 x - 80640 x^3 + 48384 x^5 - 9216 x^7 + 512 x^9. I am integrating this times an exponential the whole quantity squared. Is there any suggestion on how to integrate this efficiently with a computer. I was initially planning to go up to n = 50, and still hope to achieve that possibility. Any help would be greatly appreciated.