45044, 45036 membrane 2 boundaries Hi, Yama Masu, Below I give you a schema for the solution of your membrane consisting
- To: mathgroup at smc.vnet.net
- Subject: [mg45143] 45044, 45036 membrane 2 boundaries Hi, Yama Masu, Below I give you a schema for the solution of your membrane consisting
- From: CAP F <Ferdinand.Cap at eunet.at>
- Date: Thu, 18 Dec 2003 06:55:17 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
of two squares. When you do the calculations as proposed you may possibly extend the collocation points all over the full 4 quadrants because the symmetry properties in polar coordinates are other than in cartesian coordinates. Observe if the matrix of the determinant is well conditioned, see then the method on page 276. AS for your problem of plucking impulse like a string, you find the solution in equations (4.3.37) and (4.3.38) on page174.Greetings F Cap (************** Content-type: application/mathematica ************** Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info at wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 5021, 135]*) (*NotebookOutlinePosition[ 5684, 158]*) (* CellTagsIndexPosition[ 5640, 154]*) (*WindowFrame->Normal*) Notebook[{ Cell["\<\ (*Masu membrane with 2 homogeneous boundary conditions \ along an outer square of length 2 and an inner square of length \ 1.Show situation and determine n collocation points.First on outer \ square : *) xs[1] = -1.; ys[1] = -1.; xs[2] = -1.; ys[2] = 1.; xs[3] = 1.; ys[3] \ = 1.; xs[4] = 1.; ys[4] = -1.; xs[5] = xs[1]; ys[5] = ys[1]; pl1 = ListPlot[Table[{xs[i], ys[i]}, {i, 1, 5}], AspectRatio -> 1, PlotStyle -> PointSize[1/50], PlotJoined -> True, \ DisplayFunction->Identity] xi[1]=-0.5;yi[1]=-0.5;xi[2]=-0.5;yi[2]=0.5;xi[3]=0.5;yi[3]=0.5; \ xi[4]=0.5;yi[4]=-0.5;xi[5]=xi[1];yi[5]=yi[1]; pl2=ListPlot[Table[{xi[i], yi[i]}, {i,1,5}], AspectRatio\[Rule]1, \ PlotStyle\[Rule]PointSize[1/50], PlotJoined->True, DisplayFunction\ \[Rule]Identity] pl3=Show[pl1, pl2, DisplayFunction\[Rule]Identity] Clear[x,y,n,f,r];n=20;dxa=0.5/(n/10); Table[x[i+1]=-1.0+i*dxa,{i,0,n/5}]; Table[y[i+1]=1.0,{i,0,n/5}]; Table[x[i+n/4]=-1.0,{i,1,n/5+1}]; Table[y[i+n/4+1]=0+i*dxa,{i,0,n/5}];\ \>", "Input", FontSize->18], Cell["\<\ (* on inner square of length 1. *) \ dxi=0.25/(n/10);Table[x[i+1+n/2]=-0.5+i*dxi,{i,0,n/5}]; Table[y[i+1+n/2]=0.5, {i,0,n/5}]; Table[x[i+1+n/5+n/2]=-0.5, {i,1,n/5+1}]; Table[y[i+2+n/5+n/2]=0.+i*dxi, {i,0,n/5}]; pl4=ListPlot[Table[{x[l], y[l]}, {l,1,n}], \ PlotStyle\[Rule]PointSize[1/40], AspectRatio\[Rule]1., PlotRange\ \[Rule]{{-1.,1.}, {-1.,1.}}, DisplayFunction\[Rule]Identity]; pl5= Show[pl1, pl2, pl3, pl4, \ DisplayFunction\[Rule]$DisplayFunction];\ \>", "Input", FontSize->18], Cell["\<\ (* Now switch to polar coordinates *)Clear [r,\[CurlyPhi]]; \ Table[\[CurlyPhi][l] = N[ArcTan[x[l], y[l]]], {l, 1, n}]; Table[r[l] = N[Sqrt[x[l]^2 + y[l]^2]], {l, 1, n}]; Clear[u, U]; (* Investigate the solution of the membrane equation in polar \ coordinates r,\[CurlyPhi] D[u[r, \[CurlyPhi]], {r, 2}] + D[u[r, \[CurlyPhi]], r]/r + D[u[r, \ \[CurlyPhi]], {\[CurlyPhi], 2}]/r^2 + k^2*u[r, \[CurlyPhi]] == 0 *) Clear[u, U]; u[r, \[CurlyPhi]] = U[r]*Cos[m*\[CurlyPhi]]; \ \>", "Input", FontSize->18], Cell["\<\ Clear[u]; u[r, \[CurlyPhi]] = (A[m]*BesselJ[m, k*r] + \ B[m]*BesselY[m, k*r])*Cos[m*\[CurlyPhi]]\ \>", "Input", FontSize->18], Cell["\<\ (* Thus this solution can describe a circular ring \ membrane, which is topological identical with the Masu membrane. The \ FABER theorem on the lowest eigenvalue of a membrane of arbitrary \ form but same surface area, delivers the lower bound of the \ eigenvalue of the Masu membrane. For the circular ring membrane of \ outer radius ra=1.09769 and inner radius ri = 0.5, which has the same \ area as the Masu membrane, the eigenvalue k is given by : BesselJ[p,k*ra]*BesselY[p,k*ri]-BesselY[p,k*ra]*BesselJ[p,k*ri]==0. The homogeneous boundary conditions on both boundaries in the \ collcation points in polar coordinates now read : u[r[l],\[CurlyPhi][l]]==0 for {l,1,n} This gives a homogeneous system of linear equations for the unknown \ A[m] and B[m]. In order that this system has a nontrivial solution, \ its determinant must be zeor. This condition gives the eigenvalue k \ which may be compared with the result of the circular ring membrane. \ The solution u[r,\[CurlyPhi]] should be plotted and checked if it \ satisfeis the boundary conditions in the collocation points *) \ \>", "Input", FontSize->18] }, FrontEndVersion->"4.1 for X", ScreenRectangle->{{0, 1024}, {0, 768}}, WindowSize->{709, 672}, WindowMargins->{{66, Automatic}, {Automatic, 18}}, StyleDefinitions -> "Classic.nb" ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1705, 50, 1021, 24, 540, "Input"], Cell[2729, 76, 497, 12, 260, "Input"], Cell[3229, 90, 513, 12, 220, "Input"], Cell[3745, 104, 137, 4, 60, "Input"], Cell[3885, 110, 1132, 23, 560, "Input"] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)