Re: Re: Gaussian intersection
- To: mathgroup at smc.vnet.net
- Subject: [mg39130] Re: [mg39087] Re: Gaussian intersection
- From: Dr Bob <drbob at bigfoot.com>
- Date: Thu, 30 Jan 2003 01:07:13 -0500 (EST)
- References: <b10e8t$mr0$1@smc.vnet.net> <b15omg$et0$1@smc.vnet.net> <200301290835.DAA21127@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Better yet, Off[Solve::ifun] First@Solve[Exp[-(x - m1)/(2*s1)]/Sqrt[s1] == Exp[-(x - m2)/(2*s2) ]/Sqrt[s2], x]; PowerExpand[% /. {s1 -> r^2, s2 -> s^2}] Bobby On Wed, 29 Jan 2003 03:35:35 -0500 (EST), Michal Kvasnicka <michal.kvasnicka at quick_nospam.cz> wrote: > Or better: > > Solve[Exp[-(x - m1)^2/(2s1^2)]/s1 == Exp[-(x - m2)^2/(2s2^2)]/s2, x] > > Michal > "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de> pí¹e v diskusním > pøíspìvku news:b15omg$et0$1 at smc.vnet.net... >> Hi, >> >> Solve[Exp[-(x - m1)/(2s1)]/Sqrt[s1] == Exp[-(x - m2)/(2s2)]/Sqrt[s2], x] >> >> ?? >> >> Regards >> Jens >> Vaidyanathan wrote: >> > >> > Can anyone please tell me how to find the intersection of two >> gaussians? >> > Is there any standard method to do that? >> > Thanks, >> > Vaidyanathan. >> > >> > -- >> > Vaidyanathan Ramadurai >> > Graduate Student >> > http://www4.ncsu.edu/~vramadu >> > > > > -- majort at cox-internet.com Bobby R. Treat
- References:
- Re: Gaussian intersection
- From: "Michal Kvasnicka" <michal.kvasnicka@quick_nospam.cz>
- Re: Gaussian intersection