MathGroup Archive 2003

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Re: Gaussian intersection

  • To: mathgroup at smc.vnet.net
  • Subject: [mg39130] Re: [mg39087] Re: Gaussian intersection
  • From: Dr Bob <drbob at bigfoot.com>
  • Date: Thu, 30 Jan 2003 01:07:13 -0500 (EST)
  • References: <b10e8t$mr0$1@smc.vnet.net> <b15omg$et0$1@smc.vnet.net> <200301290835.DAA21127@smc.vnet.net>
  • Sender: owner-wri-mathgroup at wolfram.com

Better yet,

Off[Solve::ifun]
First@Solve[Exp[-(x - m1)/(2*s1)]/Sqrt[s1] == Exp[-(x - m2)/(2*s2) 
]/Sqrt[s2], x];
PowerExpand[% /. {s1 -> r^2, s2 -> s^2}]

Bobby

On Wed, 29 Jan 2003 03:35:35 -0500 (EST), Michal Kvasnicka 
<michal.kvasnicka at quick_nospam.cz> wrote:

> Or better:
>
> Solve[Exp[-(x - m1)^2/(2s1^2)]/s1 == Exp[-(x - m2)^2/(2s2^2)]/s2, x]
>
> Michal
> "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de> pí¹e v diskusním
> pøíspìvku news:b15omg$et0$1 at smc.vnet.net...
>> Hi,
>>
>> Solve[Exp[-(x - m1)/(2s1)]/Sqrt[s1] == Exp[-(x - m2)/(2s2)]/Sqrt[s2], x]
>>
>> ??
>>
>> Regards
>> Jens
>> Vaidyanathan wrote:
>> >
>> > Can anyone please tell me how to find the intersection of two 
>> gaussians?
>> > Is there any standard method to do that?
>> > Thanks,
>> > Vaidyanathan.
>> >
>> > --
>> > Vaidyanathan Ramadurai
>> > Graduate Student
>> > http://www4.ncsu.edu/~vramadu
>>
>
>
>
>



-- 
majort at cox-internet.com
Bobby R. Treat



  • Prev by Date: Re: input without output
  • Next by Date: Re: Re: Re: Lower Floor
  • Previous by thread: Re: Gaussian intersection
  • Next by thread: Re: Re: Gaussian intersection