Re: Re: Gaussian intersection
- To: mathgroup at smc.vnet.net
- Subject: [mg39143] Re: Re: Gaussian intersection
- From: "Michal Kvasnicka" <michal.kvasnicka at quick.cz>
- Date: Fri, 31 Jan 2003 04:36:56 -0500 (EST)
- References: <b10e8t$mr0$1@smc.vnet.net> <b15omg$et0$1@smc.vnet.net> <200301290835.DAA21127@smc.vnet.net> <b1aga8$pi7$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
For s1 = s2 you must obtain x = 1/2(m1+m2), due to the symmetry of the problem, but your formulation gives "nothing". The Gaussian normal distribution has the following form: 1/(Sqrt[2Pi]*sigma)*Exp[-(x-mu)^2/(2*sigma^2)]. Am I right? Michal "Dr Bob" <drbob at bigfoot.com> pí¹e v diskusním pøíspìvku news:b1aga8$pi7$1 at smc.vnet.net... > Better yet, > > Off[Solve::ifun] > First@Solve[Exp[-(x - m1)/(2*s1)]/Sqrt[s1] == Exp[-(x - m2)/(2*s2) > ]/Sqrt[s2], x]; > PowerExpand[% /. {s1 -> r^2, s2 -> s^2}] > > Bobby > > On Wed, 29 Jan 2003 03:35:35 -0500 (EST), Michal Kvasnicka > <michal.kvasnicka at quick_nospam.cz> wrote: > > > Or better: > > > > Solve[Exp[-(x - m1)^2/(2s1^2)]/s1 == Exp[-(x - m2)^2/(2s2^2)]/s2, x] > > > > Michal > > "Jens-Peer Kuska" <kuska at informatik.uni-leipzig.de> pí¹e v diskusním > > pøíspìvku news:b15omg$et0$1 at smc.vnet.net... > >> Hi, > >> > >> Solve[Exp[-(x - m1)/(2s1)]/Sqrt[s1] == Exp[-(x - m2)/(2s2)]/Sqrt[s2], x] > >> > >> ?? > >> > >> Regards > >> Jens > >> Vaidyanathan wrote: > >> > > >> > Can anyone please tell me how to find the intersection of two > >> gaussians? > >> > Is there any standard method to do that? > >> > Thanks, > >> > Vaidyanathan. > >> > > >> > -- > >> > Vaidyanathan Ramadurai > >> > Graduate Student > >> > http://www4.ncsu.edu/~vramadu > >> > > > > > > > > > > > > -- > majort at cox-internet.com > Bobby R. Treat > >
- References:
- Re: Gaussian intersection
- From: "Michal Kvasnicka" <michal.kvasnicka@quick_nospam.cz>
- Re: Gaussian intersection